
Practical Tactics for Verifying C Programs in Coq

Jingyuan Cao Ming Fu Xinyu Feng
University of Science and Technology of China

cjy91312@mail.ustc.edu.cn fuming@ustc.edu.cn xyfeng@ustc.edu.cn

Abstract
Proof automation is essential for large scale proof developmen-
t such as OS kernel verification. An effective approach is to de-
velop tactics and SMT solvers to automatically prove verification
conditions. However, for complex systems, it is almost impossible
to achieve fully automated verification and human interactions are
unavoidable. So the key challenge here is, on the one hand, to re-
duce manual proofs as much as possible, and on the other hand,
to provide user-friendly error messages when the automated veri-
fication fails, so that users could adjust specifications or the code
accordingly, or to do part of the proofs manually.

In this paper we propose a set of practical tactics for verifying
C programs in Coq, including both tactics for automatically prov-
ing separation logic assertions and ones for automatic verification
condition generation. In particular, we develop special tactics for
verifying programs manipulating singly-linked lists. Using our tac-
tics we are able to verify several C programs with one-line proof
script. Another key feature of our tactics is that, if the tactics fail,
they allow users to easily locate problems causing the failure by
looking into the remaining subgoals, which greatly improves the
usability when human interaction is necessary.

Categories and Subject Descriptors F.3.1 [Logic and meanings
of programs]: Mechanical verification; D.2.4 [Software Engineer-
ing]: Correctness proofs, formal methods

General Terms Languages, Tactics, Verification

Keywords Interactive Proof Assistants, Practical Tactics, Separa-
tion Logic, C Program Verification

1. Introduction
Verifying system software, such as operating system kernels, has
long been recognized as an important but also extremely challeng-
ing task. On the one hand, system software provides fundamen-
tal support of user applications. Its correctness is the prerequisite
for the reliability of the whole system. On the other hand, verifi-
cation of full functional correctness is difficult since the specifica-
tions need to be written in expressive logic languages and the the-
orem proving problem for such languages is usually undecidable.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CPP ’15, January 13–14, 2015, Mumbai, India.
Copyright © 2015 ACM 978-1-4503-3300-9/15/01. . . $15.00.
http://dx.doi.org/10.1145/2676724.2693162

The fact that most operating system kernels are implemented in C
makes the problem even harder, due to the pointer manipulations in
the low-level programs. In practice, one has to pay great efforts for
realistic system software verification. For instance, it took the seL4
team [13] more than 20 person years and 200,000 lines of Isabelle
scripts to verify a microkernel consisting of around 8,000 lines of
C code.

Due to complicated behaviors of system software, it is impos-
sible to achieve fully automated verification of functional correct-
ness. We usually need to combine automated verification proce-
dures with manual interactive proofs together to verify system soft-
ware in proof assistant tools. The good automated verification sup-
port should be able to reduce manual proofs as much as possible,
and to provide user-friendly error messages when the automated
verification fails so that manual efforts can easily take it over. Re-
cently there has been much work proposed to support automated
verification of C-like pointer programs, but these tools fail to satis-
fy the above two requirements. The “mostly automated” tools (e.g.,
Bedrock [8]) require users to provide both specifications in the right
forms and some hint lemmas for automated reasoning. It is very d-
ifficult to get all of them right in one shot, and when their tactics
fail there is little information for users to find where the problem-
s are. There are also some less automatic but easier to use tactics
[2, 6, 16] for verifying C programs using separation logic [17], but
they do not reduce the manual proofs as much as possible. Users
still need to do many interactive proofs using these tactics.

In this paper, we propose a set of practical tactics for verifying
C programs in Coq. Our tactics have higher degree of automation
than existing tactics [2, 6, 16]. They also provide more user-friendly
error information than Bedrock [8]. When the tactics fail, instead
of showing a gigantic unproven verification condition, they either
stop at the corresponding Hoare judgment where the failure occurs,
which provides the right context for users to find the problems
in the specifications or the code, or stop with pure assertions as
subgoals, whose proofs are independent of program state (thus we
do not need the corresponding program context). This is achieved
through the following ideas:

• We introduce a resource checking phase before directly apply-
ing Hoare logic rules to generate subgoals (verification con-
ditions). The resource checking checks whether the memory
required by the execution of the statement is available in the
pre-condition. Although the verification conditions of the logic
rules would enforce similar requirements, the resource check-
ing is like a pre-processing phase so that we can stop with the
Hoare judgment (instead of subgoals of verification conditions)
if the checking fails. The checking does searching and matching
for the variables used in the expressions to locate the required
resources. If it fails, the information about missing resources is
helpful for users to locate problems in the specifications and the
code.

97

• Based on the pre-condition, we do symbolic execution of ex-
pressions in the current statement. Results of the symbolic exe-
cution are used to instantiate and generate the post-condition in
the forward reasoning, which can be used to continue the next
forward step. The symbolic execution allows us to go further in
the forward reasoning and gives us extra degree of automation.

• We extend the verification procedure with domain-specific
knowledge. For now we only support automatic unfolding and
folding inductive assertions about singly-linked lists. Such ex-
tra knowledge already allows us to out-perform existing work
(see Sections 6 and 7 for details). It is possible to general-
ize this approach to support other data structures (e.g., trees
and doubly-linked lists) and theories (e.g., 32-bit integers). The
idea looks similar to shape-analysis techniques, but we do not
enforce special constraints over the assertion language here.

This paper is based on previous work on separation logic tactics,
but makes the following new contributions:

• We propose a set of practical tactics for verifying C programs
in Coq, including both tactics for automatically proving sepa-
ration logic assertions and ones for automatic verification con-
dition generation. In particular, we incorporate domain-specific
knowledge on singly-linked lists in the verification process for
automated reasoning of list manipulating programs.

• Our tactics allow users to easily locate problems causing the
failure of the automated proof procedure according to the user-
friendly messages and the remaining subgoals, which greatly
improves the usability when human interaction is necessary.

• We are able to verify some simple list-manipulating C programs
with one-line Coq proof script using our tactics, which outper-
forms most existing separation logic tactics. Coq implementa-
tion of the tactics is available online from:

http://staff.ustc.edu.cn/~xyfeng/ptvc/

In the rest of the paper, we describe a simplified C program-
ming language in Sec. 2. We present the separation logic assertion-
s for reasoning C programs in Sec. 3. Then we discuss our tac-
tics sep auto for proving the derivation of separation logic asser-
tions in Sec. 4. After that, we discuss our program logic and the
hoare forward tactic we have created to prove Hoare judgements
in Sec. 5. Then we discuss the implementation and evaluation of
our tactics in Sec. 6. Finally we discuss related work in Sec. 7 and
conclude in Sec. 8.

2. The Langauge
We present the ideas of our work based on a simplified small lan-
guage in Fig. 1, showing some key features of the C programming
language. Our tactics actually work on a reasonably practical sub-
set of C, which has been used to implement an executable operating
system kernel (a variant of µC/OS-II [14]).

We use i for 32-bit integers and a for memory addresses (point-
ers). A value v is either undefined, a 32-bit word value or a pointer.

An expression e follows the syntax of the C programming lan-
guage. It is either a value, a program variable, memory reference,
deference or standard arithmetic or logical operations over expres-
sions. A statement s is either an assignment statement, a sequence
of statements, a branch statement, a loop statement, or a skip state-
ment that does nothing. The while-loop is annotated with a loop
invariant I , which is a logic assertion provided by the programmer

(Integer) i ∈ Int32

(Var) x ∈ Int32

(Addr) a ∈ Int32

(Value) v ::= Vundef | Vint(i) | Vptr(a)

(Expr) e ::= v | x | ∗ e | &e | e.i | e+e
| e=e | e 6= e | . . .

(Stmts) s ::= e=e | s; s | if e then s else s
| while [I] (e) s | skip | . . .

(State) σ ::= (m,u)

(Memory) m ∈ Addr ⇀ Value

(SymTable) u ∈ Var ⇀ Addr

Figure 1. The Syntax

[[e]]rσ ,



v if e = v
v if e = x ∧ [[x]]lσ = a ∧ σ.m(a) = v
v if e = ∗e′ ∧ [[e′]]lσ = a ∧ σ.m(a) = v
Vptr(a) if e = &e′ ∧ [[e′]]lσ = Vptr(a)
v if e = e′.i ∧ [[e′]]lσ = Vptr(a)∧

σ.m(a+i) = v
v1+v2 if e = e1+e2 ∧ [[e1]]

r
σ = v1 ∧ [[e2]]

r
σ = v2

. . .
⊥ otherwise

[[e]]lσ ,


Vptr(a) if e = x ∧ σ.u(x) = a
Vptr(a) if e = ∗e′ ∧ [[e′]]rσ = Vptr(a)
Vptr(a+i) if e = e′.i ∧ [[e′]]lσ = Vptr(a)
⊥ otherwise

Figure 2. The Evaluation of Expressions

for verification purpose. Syntax of assertions will be introduced in
the next section.

A program state σ is a pair of a memory m and a symbol
table u. The memory m is modelled as a partial function from
addresses to values. The symbol table u is a partial mapping from
program variables x to addresses. Note that we use the flat memory
model for the simplified language to simplify the presentation. In
our real implementation we use a block-based memory model, as
in CompCert [15]. The difference is orthogonal with our tactics
development.

Figure 2 gives semantic functions of expression evaluations.
[[e]]rσ and [[e]]lσ evaluate the right and left values of the expression
e in the context of the state σ. Small-step operational semantics of
the language is formally defined in Coq.

Figure 3 shows a simple program doing in-place linked-list
reversal. This example could be verified using the one-line proof
script “repeat hoare forward; sep pure”. We use it as a running
example to demonstrate the ideas of tactics implementation.

3. Separation Logic Assertions
Separation logic [17] is an extension of Hoare logic to reason about
pointer manipulating programs. We follow separation logic and
give our assertion language in Fig. 4. Semantics of assertions are
defined in Fig. 5.

98

ListRev , {
list(x, L) ∗ y� ∗ t�

}
1 y=NULL;
2 while [. . .] (x 6= NULL){
3 t=(∗x).next; \\next = 4
4 (∗x).next=y;
5 y=x;
6 x= t;
}

7 x=y;{
list(x, rev(L)) ∗ y� ∗ t�

}
Figure 3. In-place Linked-list Reversal

(Asrt) p ::= emp | true | false | a 7→v | e=v | x@a
| p ∗ p | Ex x.p | p ∧ p | p ∨ p | 〈P 〉

Figure 4. The Syntax of Assertions

Assertion emp specifies a program state with an empty memory.
Assertion a 7→ v specifies a program state which has a singleton
memory with v stored at the location a. Assertion e= v specifies
states where e could be evaluated to a defined value v. Assertion
x@a means that the address of x in the symbol table is a and the
state has an empty memory. The separating conjunction p1 ∗ p2
means p1 and p2 hold over disjoint part of a state. Here we use
f ⊥ g to mean the two finite partial mappings f and g have disjoint
domains. The union of two disjoint states σ1 and σ2 is defined as
σ1] σ2. Assertion 〈P 〉 requires that P should hold and the state
should satisfy emp. Here P is a Coq proposition, i.e., we have
P :Prop in Coq. We omit other assertions here, which are standard
separation logic assertions.

In Fig. 5, we also define some useful assertions with the prim-
itive assertions. x� v means that the singleton memory has only
one memory cell, whose address is stored in the variable x and the
value in the memory cell is v. x.i�v has a similar meaning except
for the address offset i. istrue(e) means that the right value of e is
not Vint(0) or NULL. isfalse(e) has the opposite meanings. Note
that NULL is short for Vptr(0). Our tactics could also be used to
verify C programs manipulating singly-linked lists. We inductive-
ly define lseg(a1, a2, L) to specify the linked-list segments with
the value list L. list(x, L) is used to specify the singly-linked list
pointed by the head pointer x.

4. Tactics for Separation Logic Assertions
To write a tactic for automated reasoning about C program, we first
need to implement tactics which are able to prove separation logic
assertions. We implement a tactic sep auto for such a purpose.
This section will give the detailed explanation of our approach to
implementing sep auto with the Ltac language [9] provided by
Coq [1].

4.1 The Ltac Language of Coq

We use the code written in Ltac language to present our algorithms
directly. Before we demonstrate the algorithms of implementing
our tactics, we first give a brief overview of some key features of
Ltac, which are frequently used in this paper.

Coq’s “match goal” construct provides pattern backtracking
upon failure. All possible matchings of the goal against the given

σ |= emp iff σ.m = ∅
σ |= true Always

σ |= false Never

σ |= a 7→v iff σ.m = {a; v}
σ |= e=v iff [[e]]rσ = v ∧ v 6= Vundef

σ |= x@a iff σ.u(x) = a ∧ σ |= emp

(m1, u1)] (m2, u2) ,{
(m1 ∪m2, u1) if m1 ⊥ m2, u1 = u2

undefined otherwise

f ⊥ g , dom(f) ∩ dom(g) = ∅
σ |= p1 ∗ p2 iff ∃σ1, σ2. σ = σ1] σ2∧

σ1 |= p1 ∧ σ2 |= p2

σ |= Ex x.p iff ∃x.σ |= p

σ |= p1 ∧ p2 iff σ |= p1 ∧ σ |= p2

σ |= p1 ∨ p2 iff σ |= p1 ∨ σ |= p2

σ |= 〈P 〉 iff P ∧ (σ |= emp)

x�v , Ex a.x@a ∗ a 7→v

x.i�v , Ex a.x@a ∗ (a+i) 7→v

istrue(e) , Ex v.e=v∗〈v 6= Vint(0)∧v 6= NULL〉
isfalse(e) , Ex v.e=v∗〈v = Vint(0)∨v = NULL〉
lseg(a1, a2, nil) , 〈a1=a2〉
lseg(a1, a2, v ::L) , a1 7→v ∗ Ex a.(a1+4) 7→Vptr(a)

∗lseg(a, a2, L
′)

list(x, L) , Ex a.x�Vptr(a) ∗ lseg(a, 0, L)

p1 ⇒ p2 , ∀σ.σ |= p1 → σ |= p2

p1 ⇔ p2 , p1 ⇒ p2 ∧ p2 ⇒ p1

Figure 5. The Semantics of Assertions

pattern are tried out in turn: if the tactic on the right hand side of the
clause fails, then it is backtracked, and another instantiation is tried.
For instance, we can use the “match goal . . . end” construct to
implement the following tactic similar to the assumption tactic:

Ltac mytac := match goal with [H : `] ⇒ exact H end.

Here [H : `] is a proof context pattern that can match any
hypothesis and exact fails when the goal is not immediate from the
argument. Because of the backtracking semantics of match goal,
exact will be applied to every assumption until the goal is solved
or no hypothesis matches.

In addition to the powerful “match goal” construct, the most
fundamental combinator is the sequential composition denoted as
“t1; t2”. Its informal meaning is to apply t2 to every subgoal pro-
duced by the execution of t1 in the current proof context. Also
there is a more general sequential composition that has the for-
m of “t; [t1 | t2 | . . . | tn]”. It means that the tactic t is applied
and then ti is applied to the i-th (1 ≤ i ≤ n) subgoal generated
by t. It fails if t does not generate exactly n subgoals. When the
number of the generated subgoals exceeds n, one can simply use
“t; [t1 | t2 | . . . | tn ..]”, which applies tn to solve the (n + j)-th
(j ≥ 0) subgoals . The tactic “first [t1 | t2 | . . . | tn]” executes the

99

tactics t1, t2, . . . , tn one by one until a non-failing one is found;
otherwise the whole first fails. The loop tactic “repeat t” applies
t recursively to all the generated subgoals until it eventually fail-
s. The recursion stops in a subgoal when the tactic has failed. We
implement our tactics based on the primitive tactics and above lan-
guage constructs provided by Ltac.

4.2 Assertion Derivation : sep auto

The goal of sep auto is to prove “p ⇒ p′”. Here we require that
both p and p′ follow the syntax by removing the conjunction and
disjunction construct from the syntax definition in Fig. 4. It means
that both the conjunction and disjunction operators of assertions
are disallowed to appear in p and p′. We give the main procedure
of sep auto as below. Its implementation depends on four useful
tactics: sep normal, sep split, sep cancel and sep pure.

Ltac sep auto :=
1 intros;
2 match goal with
3 |H : ?σ |= ` ?σ |= ⇒
4 sep normal in H;
5 repeat match type of H with

| |= Ex . ⇒ destruct H as [?H]
end;

6 sep split in H;
7 subst;
8 sep normal;
9 repeat match goal with

| ` |= Ex . ⇒ eexists
end;

10 sep split; [sep cancel | sep pure..]
end.

For each hypothesis H , we first call sep normal in to normal-
ize H (line 4), which lifts all the existential quantifications to the
left side ofH and simplifiesH . Then we destruct all the existential
variables from H (line 5). sep split in is called to find pure propo-
sitions in H and split them out (line 6), then we use the generated
equations to do substitution and simplification (line 7). sep split in
can be easily implemented with lemma L3 in Fig. 6.

For the goal, we do the similar things at lines 8, 9 and 10. Here
the difference is that we use eexists to remove all the existential
variables in the goal, then sep cancel and sep pure are able to
prove non-pure and pure subgoals respectively, which are generated
by executing sep split over the goal. The key ideas of implementing
sep auto lie in sep normal and sep cancel, which we will discuss
more in the following sections.

4.3 Assertion Normalization : sep normal

We use sep normal to do normalization for a given assertion p, and
it transforms p into a normalized assertion p′, which has the form of
Ex x1, . . . , xn.p

′′, where p′′ has the following features: (1) it does
not contain any existential quantification; (2) it does not have emp
in it, and has at most one true; (3) the components of p′′ conform
to the right association. For instance, sep normal normalizes the
following assertion p into p′.

p ,
(Ex x.A x ∗ true) ∗ (Ex y.B y ∗ true)∗

emp ∗ (Ex a′.a 7→v ∗ a+4 7→a′ ∗ lseg(a′, 0, L))

p′ ,
Ex x, y, a′.(A x ∗ (B y ∗ (a 7→v∗

(a+4 7→a′ ∗ (lseg(a′, 0, L) ∗ true)))))

∀x.(A x⇒ B x)
t : Type A,B : t→ Asrt

Ex x.A x⇒ Ex y.B y
L 1

t : Type A : t→ Asrt
(Ex x.A x) ∗ p⇔ Ex x.(A x ∗ p) L 2

σ |= 〈P 〉 ∗ p⇔ (σ |= p) ∧ P L 3

p1 ⇒ p2 a1=a2

x@a1 ∗ p1 ⇒ x@a2 ∗ p2 L 4

p1 ⇒ p2 v1=v2
a 7→v1 ∗ p1 ⇒ a 7→v2 ∗ p2 L 5

p1 ⇒ p2 L1=L2

lseg(a1, a2, L1) ∗ p1 ⇒ lseg(a1, a2, L2) ∗ p2
L 6

p2 ⇒ p′2

p1 ∗ p2 ⇒ p1 ∗ p′2
L 7 p⇒ lseg(a, a, nil) ∗ p L 8

p1 ⇒ lseg(a2, a3, L3) ∗ p2 L1++L3 = L2

lseg(a1, a2, L1) ∗ p1 ⇒ lseg(a1, a3, L2) ∗ p2
L 9

Figure 6. Selected Lemmas for Assertions

The following code gives the implementation details for sep normal.

Ltac sep normal :=
1 match goal with
2 | ` |= Ex . ⇒
3 eapply L1;

[intros H ′; sep normal; exact H ′ | idtac]
4 | ` |= ?p⇒
5 match find Ex p with
6 | None⇒ sep simpl
7 | Some ?n⇒ sep lift n; apply L2; sep normal

end
end.

The purpose of sep normal is to lift all the existential variables to
the left side of the goal and simplify the goal. If the goal has the
form of Ex x.p , we apply L1 (see Fig. 6) to normalize it by dealing
with the inner p first (lines 2-3). If it does not begin with Ex, we
use find Ex to find the position of the existentially quantified part
in p , then call sep lift to move it to the left side of p and apply L2
to expand the scope of the existential variable (lines 4-5,7). sep lift
is implemented based on the associative and commutative laws of
separation logic assertions. If there does not exist any existentially
quantified part in p, which means all the existential variables have
been moved to the left side of p, we use sep simpl to simplify p by
removing the redundant true and emp according to some obvious
properties of separation logic assertions (line 6).

4.4 Spatial Assertion Elimination : sep cancel

We implement sep cancel as below, it is used to prove that a spatial
assertion without existential quantifications implies another. Here
spatial assertions do not contain any pure assertions like 〈P 〉.

sep cancel first calls cancel same to eliminate the same parts
in the premise and goal (line 1). If the goal still cannot be solved

100

H : σ |= (Ex a1.y@a1 ∗ a1 7→NULL) ∗ (Ex a, a′.(Ex a1.x@a1 ∗ a1 7→Vptr(a)) ∗ a 7→v ∗ a+4 7→Vptr(a′) ∗ lseg(a′, 0, L)) ∗ 〈length(L) ≥ 2〉
σ |= (Ex ax, Lx.(Ex a1.x@a1 ∗ a1 7→Vptr(ax)) ∗ lseg(ax, 0, Lx)) ∗ (Ex ay , Ly .(Ex a1.y@a1 ∗ a1 7→Vptr(ay)) ∗ lseg(ay , 0, Ly))∗

〈Lx++rev(Ly)=v ::L〉 ∗ 〈length(L) ≥ 2〉 ∗ 〈L 6= nil〉
⇓ (1). sep normal in H

H : σ |= Ex a1, a, a′, a2.y@a1 ∗ a1 7→NULL ∗ x@a2 ∗ a2 7→Vptr(a) ∗ a 7→v ∗ a+4 7→Vptr(a′) ∗ lseg(a′, 0, L) ∗ 〈length(L) ≥ 2〉
σ |= (Ex ax, Lx.(Ex a1.x@a1 ∗ a1 7→Vptr(ax)) ∗ lseg(ax, 0, Lx)) ∗ (Ex ay , Ly .(Ex a1.y@a1 ∗ a1 7→Vptr(ay)) ∗ lseg(ay , 0, Ly))∗

〈Lx++rev(Ly)=v ::L〉 ∗ 〈length(L) ≥ 2〉 ∗ 〈L 6= nil〉
⇓ (2). repeat destructH; sep split in H

H1 : length(L) ≥ 2 H : σ |= y@a1 ∗ a1 7→NULL ∗ x@a2 ∗ a2 7→Vptr(a) ∗ a 7→v ∗ a+4 7→Vptr(a′) ∗ lseg(a′, 0, L)
σ |= (Ex ax, Lx.(Ex a1.x@a1 ∗ a1 7→Vptr(ax)) ∗ lseg(ax, 0, Lx)) ∗ (Ex ay , Ly .(Ex a1.y@a1 ∗ a1 7→Vptr(ay)) ∗ lseg(ay , 0, Ly))∗

〈Lx++rev(Ly)=v ::L〉 ∗ 〈length(L) ≥ 2〉 ∗ 〈L 6= nil〉
⇓ (3). sep normal; repeat eexists; sep split

H1 : length(L) ≥ 2 H : σ |= y@a1 ∗ a1 7→NULL ∗ x@a2 ∗ a2 7→Vptr(a) ∗ a 7→v ∗ a+4 7→Vptr(a′) ∗ lseg(a′, 0, L)
goal 1 : σ |= x@?1 ∗ ?1 7→Vptr(?2) ∗ lseg(?2, 0, ?3) ∗ y@?4 ∗ ?4 7→Vptr(?5) ∗ lseg(?5, 0, ?6)
goal 2, 3, 4 : ?3++rev(?6)=v ::L length(L) ≥ 2 length(L) 6= 0

⇓ (4). sep cancel (line 1 cancel same)
H1 : length(L) ≥ 2 H : σ |= lseg(a, a′, v ::nil) ∗ lseg(a′, 0, L)

goal 1 : σ |= lseg(a, 0, ?3) ∗ lseg(0, 0, ?6)
goal 2, 3, 4 : ?3++rev(?6)=v ::L length(L) ≥ 2 length(L) 6= 0

⇓ (5). sep cancel (line 8)
H1 : length(L) ≥ 2 H : σ |= lseg(a′, 0, L)

goal 1 : σ |= lseg(a′, 0, ?7) ∗ lseg(0, 0, ?6)
goal 2, 3, 4 : (v ::nil++?7)++rev(?6)=v ::L length(L) ≥ 2 length(L) 6= 0

⇓ (6). sep cancel (line 1 cancel same)
H1 : length(L) ≥ 2 H : σ |= emp

goal 1 : σ |= lseg(0, 0, ?6)
goal 2, 3, 4 : (v ::nil++L)++rev(?6)=v ::L length(L) ≥ 2 length(L) 6= 0

⇓ (7). sep cancel (line 9 cancel emp lseg)
H1 : length(L) ≥ 2 H : σ |= lseg(a, a′, v ::nil) ∗ x@a2 ∗ a2 7→Vptr(a) ∗ y@a1 ∗ a1 7→NULL ∗ lseg(a′, 0, L)

goal 1, 2, 3 : (v ::nil++L)++rev(nil)=v ::L length(L) ≥ 2 length(L) 6= 0
⇓ (8). sep pure

No more subgoals.

Figure 7. A Step-by-Step Example using sep auto

it applies lemma L9 (see Fig. 6) to subtract the sub-list segment in
the goal and try sep cancel again until the goal is solved.

Ltac sep cancel :=
1 cancel same;
2 fold node in H; fold node;
3 match goal with
4 |H : ?σ |= ?p ` ?σ |= ?q ⇒
5 match search match lseg p q with
6 | Some (?m, ?n)⇒
7 sep lift m; sep lift in H n;
8 try solve [apply L8; sep cancel];
9 try solve [gen H; apply L9;

intros; [sep cancel | sep pure..]]
10 | None⇒ cancel emp lseg

end
end.

Note that cancel same may not solve the whole goal when list seg-
ments appear in the hypothesis or the goal. For example, suppose
that the hypothesis is “ σ |= lseg(a, a1, L) ∗ lseg(a1, a

′, L′)”, and
the goal is “σ |= lseg(a, a′, L++L′)”. Because there are no iden-
tical parts found by search match in the hypothesis and the goal
(line 14), cancel same does nothing. The remaining goal needs to
be proved by tactics from line 2 to line 10. Here we use another
function search match lseg to find the matching components like

lseg(a1, a2, L1) and lseg(a1, a
′
2, L2), whose tail pointers a2 and

a′2 do not need to be identical. The positions of lseg(a, a1, L) and
lseg(a, a′, L++L′) can be returned (line 4), then we lift them to
the left side and subtract lseg(a, a1, L) from lseg(a, a′, L++L′)
by applying L9. Finally the remaining goal is exactly the same as
the hypothesis and could be proved by cancel same, and the pure
subgoal generated by applying L9 can be trivially solved now.

Note that we need to consider how to deal with the empty
list segment, before applying L9 to subtract the list segment from
the goal. We try to eliminate the list segment using L8 (line 7),
which means if the list segment in the goal is an empty one we
can trivially remove it. When search match lseg cannot find any
matching components, we try to solve the remaining goals by
eliminating the empty list segment both in the hypothesis and
the goals using cancel emp lseg (line 9), which can be easily
implemented with L8 and we omit it here.

We implement cancel same like this: if the goal is true or the
same as the hypothesis H , it can be trivially solved (lines 11-12),
otherwise we use search match to find the assertions that match
each other in the hypothesis and the goal (line 14), then lift them
to the left side of the assertion (line 16) and cancel both of them
according to the lemmas L4, L5, L6 and L7 (lines 18-21). Here
search match searches the hypothesis and the goal, and returns
the positions of matching components, which have the following

101

forms: x@a1 and x@a2, a 7→ v1 and a 7→ v2, lseg(a1, a2, L1)
and lseg(a1, a2, L2), and any other components that are exactly
the same. We do this routine repetitively to eliminate all the iden-
tical parts in the hypothesis and the goal. We give the code for
cancel same as below, in which gen is short for “generalize de-
pendent”.

Ltac cancel same :=
11 match goal with
12 | ` ?σ |= true⇒ simpl; auto
13 |H : ?σ |= ?p ` ?σ |= ?q ⇒
14 try solve [exact H];
15 match search match p q with
16 | Some (?m, ?n)⇒
17 sep lift m; sep lift in H n;
18 match goal with
19 | ` |= @ ∗ ⇒

gen H; apply L4; intros;
[cancel same | sep pure..]

20 | ` |= 7→ ∗ ⇒
gen H; apply L5; intros;

[cancel same | sep pure..]
21 | ` |= lseg(, ,) ∗ ⇒

gen H; apply L6; intros;
[cancel same | sep pure..]

22 | ⇒ gen H; apply L7; cancel same
end

23 | None⇒ idtac
end

end.

4.5 An Example using sep auto.

Figure 7 presents a detailed procedure for using sep auto to prove
a non-trivial derivation of separation logic assertions. It shows that
how our sep auto works. After running the normalization and pre-
process steps (1)(2) and (3), all the existential variables and pure
propositions are split out in the hypothesis, while all the existen-
tial variables turns to un-instantiated variables (?n) that need to be
instantiated in the future. Then sep cancel attempts to cancel the
common parts at steps (4)(5)(6) and (7). The procedure of cancela-
tion will instantiate variables “?n” and some pure propositions are
generated as well. After that we use sep pure to solve the left pure
goals at step (8).

5. Tactics for Judgements of Program Logics
In this section, we present a tactic hoare forward which is designed
to build automated proofs for generating verification conditions
from Hoare judgements. The purpose of hoare forward is to make
one forward-step proof for Hoare judgements, and the tactic can be
easily constructed like “repeat hoare forward; sep pure” to au-
tomatically prove the entire Hoare judgement. Here sep pure is an
extensible tactic for solving the pure subgoals generated by running
hoare forward. When the repeated calls to hoare forward fail to
prove the goal, we are able to use hoare forward to do step-by-step
reasoning, which is helpful for us to find the places where proof-
s fail. If hoare forward fails without doing anything, we need to
check if the resources (i.e., memory) specified by the pre-condition
is enough for the current statement. When the repeated execution
of hoare forward succeeds, the remaining subgoals will be proved
by sep pure. Note that we do not guarantee that sep pure can solve
all the remaining subgoals. If it fails we need to fix the pure parts of
the specifications or the code to make sure that those pure subgoal-
s can be solved. If the subgoals are indeed valid, users may also

` {p}skip{p}
SKIP ` {p1}s1{p2} ` {p2}s2{p3}

` {p1}s1; s2{p3}
SEQ

` {p1}s{p′2} p′2 ⇒ p2

` {p1}s{p2}
FORWARD

` {p′1}s{p2} p1 ⇒ p′1

` {p1}s{p2}
BACKWARD

` {p1}s{q} ` {p2}s{q}
` {p1 ∨ p2}s{q}

DISJ

` {p1 ∧ istrue(e)}s1{p2} ` {p1 ∧ isfalse(e)}s2{p′2}
p1 ⇒ Ex v.e = v

` {p1}if e then s1 else s2{p2 ∨ p′2}
IF

` {I ∧ istrue(e)}s{I} I ⇒ Ex v.e = v

` {I}while [I] (e) s{I ∧ isfalse(e)}
WHILE

` {p1}s{p2}
` {Ex x.p1}s{Ex x.p2}

EXIST

p⇒ &e1=Vptr(a) p⇔ a 7→v ∗ p′ p⇒ e2=v
′

` {p}e1=e2{a 7→v′ ∗ p′}
ASSIGN

Figure 8. Inference Rules

extend the tactic sep pure to make it more powerful to prove the
subgoals automatically, or simply prove them manually.

5.1 The hoare forward Tactic

Figure 9 presents the implementation of hoare forward, which is
used to make a forward step for proving the judgment ` {p}s{q}.
To apply it, we make the same requirement as sep auto, both the
conjunction and disjunction operators are disallowed in the pre- and
post-conditions given by users. We only deal with the conjunction
and disjunction operators produced by applying the inference rules.
We implement hoare forward in the following three steps:

1. We check and unfold the pre-condition to make sure that the
resource specified by the pre-condition is enough for evaluating
the expressions whose results are required by the inference rules
shown in Fig. 8.

2. We repetitively apply the sequential composition rule (the SEQ
rule in Fig. 8) to decompose the entire Hoare judgement into
small pieces, and we only deal with the first one.

3. We apply the proper inference rule to make a forward step
for proving the judgement of the first statement which has an
uninstantiated post-condition (i.e., p2 in the SEQ rule), then we
do symbolic execution for expressions in the statement to obtain
the values which are used to instantiate the post-condition.

In the first step (lines 2-4), the current pre-condition may have a
disjunction operator introduced by the last post condition when ap-
plying the IF rule, so we apply the DISJ rule to continue the forward
step with two different pre-conditions (line 2). If there is no disjunc-
tion operator in the pre-condition, we first call find first inv exprs
to return a pair consisting of an optional assertion and a list of ex-
pressions. The assertion is the annotated loop invariant if the s-

102

Ltac hoare forward :=
1 match goal with
2 | ` (` { ∨ } { })⇒ eapply DISJ; hoare forward
3 | ` (` { }?s{ })⇒
4 let l := find first inv exprs s in hoare unfold l;
5 hoare forward first

end.

Ltac hoare forward first :=
6 match goal with
7 | ` (` { } ; { })⇒
8 eapply SEQ; [hoare forward first | idtac]
9 | ` (` { } { })⇒
10 eapply FORWARD; intros;
11 [hoare forward stmt
12 | intros H; first [exact H | sep auto]]

end.

Ltac hoare forward stmt :=
13 match goal with
14 | ` (` { }if then else { })⇒
15 eapply IF;
16 [eapply BACKWARD;
17 [idtac | intros H;

sep conj to star in H; exact H]
18 | eapply BACKWARD;
19 [idtac | intros H;

sep conj to star in H; exact H]
20 | symbolic exe]
21 | ` (` { }while [] () { })⇒
22 eapply FORWARD;
23 [eapply WHILE;
24 [eapply BACKWARD;
25 [idtac | intros H;

sep conj to star in H; exact H]
26 | symbolic exe]
27 | intros H; sep conj to star in H; exact H]
28 | ` (` { }skip{ })⇒ apply SKIP
29 | ` (` { } = { })⇒
30 repeat apply EXIST; eapply ASSIGN;
31 [symbolic exe
32 | split; intros; cancel same
33 | symbolic exe]

end.

Figure 9. The Tactic hoare forward for Proving “` {p}s{q}”

tatement is a loop (None otherwise). The list of expressions are
those appear in the first statement. Then hoare unfold is used to do
resource check by inspecting the pre-condition and the aforemen-
tioned loop invariant (if any) to ensure there is enough resource for
computing the list of expressions (line 4). It may also unfold lseg
(if any) in the pre-condition or the loop invariant before doing the
resource check. After that, we call hoare forward first to do the
second step, which repetitively apply the SEQ rule to get the first
Hoare judgment we need to prove. The judgement has the form of
` {p}s{?q}, in which the statement s does not contain the sequen-
tial connector “;” and the post condition is uninstantiated. Then we
call hoare forward stmt to finish the third step (line 11), and the
post condition is instantiated for the next hoare forward step.

The tactic hoare forward stmt tries to apply the proper infer-
ence rule by matching the current goal, and the generated side-
conditions like “p ⇒ e =?v” are solved by the tactic symbol-

ic exe (lines 20, 26, 31 and 33), which does symbolic execution
to get the value of expressions based on the resource specified by
p. The returned value is used to instantiate “?v”, and some re-
lated properties (eg. v is not Vundef) for the values are guaran-
teed by generating some pure goals. These pure goals remain to
be proven after repetitively doing hoare forward. Here applying
the IF and WHILE rules will introduce the conjunction operators in
the pre-condition of the subgoal. As mentioned before, since our
hoare forward tactic requires that the pre-conditions must have the
form of p1 ∗ p2 ∗ . . . ∗ pn, we need to convert the pre-condition
into the required form to allow subsequent calls to hoare forward.
We use a tactic sep conj to star in to convert the conjunction op-
erators into the separating conjunction operator (lines 17, 19, 25
and 27). sep conj to star in can be easily implemented with the
following two lemmas, and their premises “p ⇒ e =?v” can be
proven by symbolic exe.

p⇒ e=v

p ∧ istrue(e)⇒ p ∗ 〈v 6= Vint(0) ∧ v 6= NULL〉

p⇒ e=v

p ∧ isfalse(e)⇒ p ∗ 〈v=Vint(0) ∨ v=NULL〉

In the following paragraphs, we will explain more about how our
hoare unfold and symbolic exe work.

5.2 Checking Resource and Unfolding Lists – hoare unfold

Figure 10 presents the main routine of implementing hoare unfold,
which takes an optional assertion a and a list of expressions l as its
input. When a is None, hoare unfold first applies BACKWARD rule,
then use sep normal in to normalize the pre-condition (lines 9 and
11). The hypothesis H is converted into an equivalent one that has
the form of “Ex x1, . . . , xn.p”, then we use sep unfold in H e
to get a new pre-condition that has the resource for calculat-
ing e (line 12). When a is Some I , hoare unfold first does
hoare unfold (None, l) to check the current pre-condition has e-
nough resource for the expressions in l, then uses BACKWARD
to convert the pre-condition into the loop invariant I and uses
sep auto to prove that the original pre-condition implies the new
pre-condition I (lines 4-5). Then hoare unfold tries to unfold the
list segments with I to make sure that I provides enough resource
for calculating the expressions in l (lines 7-13).

Since sep unfold in H e always takes a normalized H as its
input, we can repetitively apply L1 (lines 15-18) to make sure that
check resource uses an assertion p without any existential quan-
tifications (line 19). If check resource returns Some v, it mean-
s that p has the resource for e and sep unfold in succeeds with
idtac (line 21), otherwise it will try to unfold the list segments in
the pre-conditions to obtain unfolded list nodes for calculating e
(lines 22-30). For example, suppose we have the pre-condition “
x� Vptr(a) ∗ lseg(a, 0, L)” and we need to calculate the value
of (∗x).4. Then check resource cannot find the required memo-
ry “a+4 7→ ”, and it fails to pass the resource check procedure.
However, “ x�Vptr(a) ∗ lseg(a, 0, L)” does contain the resource
“a+4 7→ ” if a 6= 0. We can assume a 6= 0 and apply the UNFOLD
lemma below:

a 6= 0 σ |= lseg(a, 0, L) ∗ p
σ |= Ex v, L′.〈L=v ::L′〉 ∗ lseg(a, 0, L) ∗ p

UNFOLD

It unfolds the pre-condition into the following one, which contains
the resource demanded by (∗x).4.

x�Vptr(a) ∗ Ex v, L′, a′.〈L=v ::L′〉∗
a 7→v ∗ a+4 7→Vptr(a′) ∗ lseg(a′, 0, L′)

103

Ltac hoare unfold x :=
1 match x with
2 | (Some ?I, ?l)⇒
3 hoare unfold (None, l);
4 [apply BACKWARD with (p′1 := I);
5 [hoare unfold (None, l) | sep auto]
6 | idtac..]
7 | (None, (?e1+?e2) ::?l)⇒

hoare unfold (None, e1 ::e2 :: l)
8 | (None, ?e ::?l)⇒
9 eapply BACKWARD;
10 [idtac
11 | intros H; sep normal in H;
12 sep unfold in H e; [exact H | idtac..]];
13 [hoare unfold (None, l) | idtac..];

end.

Ltac sep unfold in H e :=
14 match type of H with
15 | |= Ex . ⇒
16 eapply L1 in H;
17 [idtac
18 | intros H ′; sep unfold in H ′ e;

[exact H ′ | idtac..]]
19 | |= ?p⇒
20 match check resource p e with
21 | Some ⇒ idtac
22 | None⇒
23 match e with
24 | ?e′. ⇒
25 match check resource p (&e′) with
26 | None⇒
27 sep unfold in H (&e′);
28 [sep normal in H;

sep unfold in H e | idtac..]
29 | Some Vptr(?a)⇒

sep unfold lseg in H a
30 | Some ⇒ fail

end
31 | ⇒ fail

end end end.

Ltac sep unfold lseg in H a :=
32 match find math p lseg(a, ,) with
33 | None⇒ fail
34 | Some ?n⇒
35 sep lift in H n; apply UNFOLD in H;
36 [sep rewrite pure in H; unfolds lseg | idtac]

end

Figure 10. The Tactc hoare unfold for Unfolding Pre-conditions

To handle the above situation, we try to unfold the list segments
when the resource checking fails (lines 22-30). If check resource
returns None for expression e.i, we continue to call check resource
on &e until it returns Some Vptr(a), then we call sep unfold lseg in
to unfold a head node of the list segment starting from a (line
29). sep unfold lseg in applies UNFOLD to the hypothesis and use
sep rewrite pure in to rewrite the generated equations in H , then
unfold the list segment by the definition of lseg (line 36).

Below we give an example to show how our hoare unfold
works. Suppose we want to prove the Hoare judgement below:

`
{

Ex a.x�Vptr(a) ∗ lseg(a, 0, L) ∗ 〈length(L) ≥ 2〉
}

x=(∗((∗x).next)).next
{...}

We have to unfold the list segment twice. hoare unfold will unfold
the pre-condition in the goal to make sure that the expressions in
the assignment statement “x := (∗((∗x).next)).next” (next = 4)
be able to pass the resource check. Here we know length(L) ≥ 2,
and it is safe to unfold it twice. We first apply the BACKWARD rule
to generate the following subgoal, then we are able transform the
assertion into an equivalent one, which is used to instantiate ?1.

H : σ |= Ex a.x�Vptr(a) ∗ lseg(a, 0, L) ∗ 〈length(L) ≥ 2〉
σ |= ?1

By applying L1 we only need to construct an equivalent assertion
according to H1.

H1 : σ |= x�Vptr(a) ∗ lseg(a, 0, L) ∗ 〈length(L) ≥ 2〉
σ |= ?2

Obviously, H1 does not contain the resource demanded by
(∗((∗x).next)).next, thus check resource fails. Then sep unfold in
will try to unfold (∗x).next first. H1 still does not contain the
resource for (∗x).next and sep unfold in will try to unfold x.
Now H1 has the resource of x and the value of x is Vptr(a),
so sep unfold in will call sep unfold lseg in, which tries to lift
lseg(a, 0, L) to the left side and applies UNFOLD for unfold-
ing. After that H1 contains a pure assertion L = v1 :: L1.
We use sep rewrite pure in to substitute L in H1 and unfold
lseg(a, 0, v1 ::L1) by the definition of lseg, and then call sep normal in
to normalize H1 as below :

H1 : σ |= Ex v1, L1, a1.〈L=v1 ::L1〉 ∗ a 7→v1∗
a+4 7→Vptr(a1) ∗ lseg(a1, 0, L1)∗
x�Vptr(a) ∗ 〈length(v1 ::L1) ≥ 2〉

σ |= ?2

Since we successfully unfold (∗x).next with the current pre-
conditions, we try to unfold (∗((∗x).next)).next under H1 as be-
fore. Some unknown existential variables will be instantiated and
we get the new pre-condition in H2:

H2 : σ |= 〈L=v1 ::L1〉 ∗ a 7→v1 ∗ a+4 7→Vptr(a1)∗
lseg(a1, 0, L1) ∗ x�Vptr(a) ∗ 〈length(v1 ::L1) ≥ 2〉

σ |= ?3

Now the pre-condition contains the resource of (∗x).next and its
value is Vptr(a1). Then sep unfold in finds lseg(a1, 0, L1) and
continues to do the same thing as before. Finally it turns H2 into
H3 that has the pre-condition we want:

H3 : σ |= Ex v2, L2, a2.〈L1=v2 ::L2〉 ∗ a1 7→v2∗
a1+4 7→Vptr(a2) ∗ lseg(a2, 0, L2)∗
〈L=v1 ::v2 ::L2〉 ∗ a 7→v1 ∗ a+4 7→Vptr(a1)∗
x�Vptr(a) ∗ 〈length(v1 ::v2 ::L2) ≥ 2〉

σ |= ?3

Finally we instantiate ?3, ?2 and ?1 and turn the original pre-
condition into the following:

`


Ex a, v1, L1, a1, v2, L2, a2.〈L1=v2 ::L2〉∗
a1 7→v2 ∗ a1+4 7→Vptr(a2) ∗ lseg(a2, 0, L2)∗
〈L=v1 ::v2 ::L2〉 ∗ a 7→v1 ∗ a+4 7→Vptr(a1)∗
x�Vptr(a) ∗ 〈length(v1 ::v2 ::L2) ≥ 2〉


x=(∗((∗x).next)).next
{...}

104

Ltac symbolic exe :=
1 intros;
2 match goal with
3 |H : ?σ |= ` ?σ |= ⇒
4 sep normal in H;
5 repeat match type of H with

| |= Ex . ⇒ destruct H as [?H]
end;

6 sep split in H; subst;
7 repeat match goal with

| ` |= Ex . ⇒ eexists
end;

8 sep get rv
end.

Ltac sep get rv :=
9 match goal with
10 |H : ?σ |= ` ?σ |= (?e1+?e2)= ⇒

eapply SE1; [sep get rv | sep get rv | idtac]
11 |H : ?σ |= ` ?σ |= ∗?e= ⇒

eapply SE2; [sep get rv | sep auto | idtac]
12 |H : ?σ |= ` ?σ |= ?e.?i= ⇒

eapply SE3; [sep get rv | sep auto | idtac]
13 |H : ?σ |= ` ?σ |= &(∗?e)= ⇒

eapply SE4; sep get rv
14 |H : ?σ |= ` ?σ |= &(?x)= ⇒

eapply SE5; sep auto
15 |H : ?σ |= ` ?σ |= ?x= ⇒

eapply SE6; [sep get rv | sep auto | idtac]
16 |H : ?σ |= ` ?σ |= NULL= ⇒

apply SE7
end.

Figure 11. sep get rv and symbolic exe

In this example, since hoare unfold successfully unfolds the list
segment twice, hoare forward can continue with the assignment
statement because all the resources are ready.

5.3 Symbolic Execution for Expressions – symbolic exe

We use symbolic exe to prove “p ⇒ e =?v” by instantiating ?v
with the value obtained from symbolic execution of e under p.

We give the implementation of symbolic exe in Fig.11. Similar
to sep auto, we first do normalization and destruction to make
sure that there are no existential quantifications in the hypothesis
and the goal (lines 4-7). Then sep get rv is called to calculate the
value of the expression. sep get rv is implemented by repetitively
applying the rules in Fig. 12, and these rules are proved to be sound
according to the semantics of assertions. The meanings of these
rules are straightforward and we omit the explanation here.

5.4 Linked-list Reversal Example Using hoare forward

We could use one-line proof script “repeat hoare forward; sep pure”
to prove the in-place linked-list reversal program (shown in Fig. 13).

The pre-condition of the program is presented at line 1, and
the post-condition is given at line 8. The pre-condition specifies
a single linked list pointed by a pointer variable x, and the temporal
variables y and t are not initialized. The post-condition specifies a
linked list pointed by variable x with reversed list of values in it.

We need to do hoare forward 7 times to complete the proof.
The 1st hoare forward assigns NULL to y and generates the post-
condition at line 2. The 2nd hoare forward first proves that the as-

σ |= e1=v1 σ |= e2=v2 v1 + v2 6= Vundef

σ |= (e1 + e2)=v1 + v2
SE 1

σ |= e=Vptr(a) σ |= a 7→v ∗ p v 6= Vundef

σ |= ∗e=v SE 2

σ |= &e=Vptr(a) σ |= a+i 7→v ∗ p v 6= Vundef

σ |= e.i=v
SE 3

σ |= e=v

σ |= &(∗e)=v SE 4
σ |= x@a ∗ p

σ |= &x=Vptr(a)
SE 5

σ |= &x=Vptr(a) σ |= a 7→v ∗ p v 6= Vundef

σ |= x=v
SE 6

σ |= NULL=Vptr(0)
SE 7

Figure 12. Symbolic Execution Rules

sertion at line 2 implies the loop invariant I , then tries to unfold
I with x 6= NULL, and finally uses WHILE to handle the while
loop and convert “∧istrue(x 6= NULL)” into “∗〈ax 6= 0〉” at line
3. Also a similar conversion is done for the post-condition of the
while loop at line 7. The 3rd hoare forward unfolds lseg(ax, 0, Lx)
and deals with the assignment statement at line 4. The 4th to 6th
hoare forward handle the next 3 assignment statement and prove
that the post-condition of the 3rd statement (line 5) implies the loop
invariant I . Then the 7th hoare forward handles the last assignment
statement and proves that the assertion at line 7 implies the asser-
tion at line 8. Finally we use sep pure to prove the remaining pure
subgoals to finish the proof for the whole program.

5.5 Debugging with hoare forward

Our hoare forward tactic provides some nice features for debug-
ging proofs. If hoare forward fails with some error message and
does nothing over the current Hoare judgement, we know that
the resource specified by the pre-condition does not match the re-
source required by the current statement. We need to adjust the pre-
condition or the code in terms of the error message to make the
execution of hoare forward succeeds. If hoare forward succeeds
and generates some pure subgoals which cannot be proved, then
we may need to add additional pure assertions in the pre-condition
or modify the code to get additional conditions to solve them. We
will demonstrate these features using the following example.

` {x� ∗ y� }y=(∗x).next{x� ∗ y� }

Our tactic hoare forward fails to step forward and does nothing
because the execution of hoare unfold over (∗x).next with the pre-
condition fails. The expression (∗x).next demands x�Vptr(a) ∗
a+4 7→ , while the pre-condition does not have it. Then we check
the pre-condition and add a list segment pointed by x, but we forget
to add the same resource in the post condition:

` {list(x, L) ∗ y� }y=(∗x).next{x� ∗ y� }

Then hoare forward first unfolds the list segment and generates a
pure subgoal which requires that the head node of the list segment
is not NULL,

H : σ |= x�Vptr(a) ∗ lseg(a, 0, L) ∗ y�

a 6= 0

105

I ,

 Ex ax, Lx.x�Vptr(ax) ∗ lseg(ax, 0, Lx)∗
Ex ay, Ly.y�Vptr(ay) ∗ lseg(ay, 0, Ly)∗
t� ∗ 〈Lx++rev(Ly)=L〉


1

{
list(x, L) ∗ y� ∗ t�

}
y=NULL;

2
{

y�NULL ∗ list(x, L) ∗ t�
}

while [I] (x 6= NULL){

3


Ex ax, ay, Lx, Ly.x�Vptr(ax)∗
lseg(ax, 0, Lx) ∗ y�Vptr(ay)∗
lseg(ay, 0, Ly) ∗ t� ∗
〈Lx++rev(Ly)=L〉 ∗ 〈ax 6= 0〉}


t=(∗x).next;

4


Ex ax, ay, Lx, Ly, v, L

′
x, a.t�Vptr(a)∗

〈Lx = v ::L′
x〉 ∗ x�Vptr(ax) ∗ ax 7→v∗

ax+4 7→Vptr(a) ∗ lseg(a, 0, L′
x)∗

y�Vptr(ay) ∗ lseg(ay, 0, Ly)∗
〈v ::L′

x++rev(Ly)=L〉 ∗ 〈ax 6= 0〉


(∗x).next=y;
y=x;
x= t;

5


Ex ax, ay, Lx, Ly, v, L

′
x, a.x�Vptr(a)∗

y�Vptr(ax) ∗ ax+4 7→Vptr(ay)∗
t�Vptr(a) ∗ 〈Lx = v ::L′

x〉 ∗ ax 7→v∗
lseg(a, 0, L′

x) ∗ lseg(ay, 0, Ly)∗
〈v ::L′

x++rev(Ly)=L〉 ∗ 〈ax 6= 0〉


}

6


Ex ax, ay, Lx, Ly.x�Vptr(ax)∗
lseg(ax, 0, Lx) ∗ y�Vptr(ay)∗
lseg(ay, 0, Ly) ∗ t� ∗
〈Lx++rev(Ly)=L〉 ∗ 〈ax=0〉


x=y;

7


Ex ax, ay, Lx, Ly.x�Vptr(ay)∗
lseg(ax, 0, Lx) ∗ y�Vptr(ay)∗
lseg(ay, 0, Ly) ∗ t� ∗
〈Lx++rev(Ly)=L〉 ∗ 〈ax=0〉


8

{
list(x, rev(L)) ∗ y� ∗ t�

}
Figure 13. Prove In-Place List Reversal

and we have the Hoare judgement as follows:

`

 Ex a, v, L′, a′.
〈L=v ::L′〉 ∗ a 7→v ∗ a+4 7→Vptr(a′)∗
lseg(a′, 0, L′) ∗ x�Vptr(a) ∗ y�


y=(∗x).next
{x� ∗ y� }

Then it steps forward with the ASSIGN rule and instantiates the
post-condition of the assignment statement with the assertion inH .
Besides the pure subgoal a 6= 0 generated before, another goal is
to prove that the assertion in H implies the given post-condition:

H : σ |= Ex a, v, L′, a′.y�Vptr(a′) ∗ 〈L=v ::L′〉 ∗ a 7→v∗
a+4 7→Vptr(a′) ∗ lseg(a′, 0, L′) ∗ x�Vptr(a)

σ |= x� ∗ y�

Finally hoare forward will call sep auto to solve this goal. After
eliminating all the matched spatial assertions in the hypothesis and

1
{

list(x, L) ∗ y�
}

if (x 6= NULL) {
2

{
Ex a.x�Vptr(a) ∗ lseg(a, 0, L) ∗ 〈a 6= 0〉

}
y=(∗x).next;

3

{
Ex a, v, L′, a′.y�Vptr(a′) ∗ 〈L=v ::L′〉 ∗ x�Vptr(a)∗
a 7→v ∗ a+4 7→Vptr(a′) ∗ lseg(a′, 0, L′) ∗ 〈a 6= 0〉

}
} else {

4
{

Ex a.x�Vptr(a) ∗ lseg(a, 0, L) ∗ 〈a=0〉
}

skip;
5

{
Ex a.x�Vptr(a) ∗ lseg(a, 0, L) ∗ 〈a=0〉

}
}

6
{

list(x, L) ∗ y�
}

Figure 14. Fix the Proofs by Modifying the Code

the goal, we get an unprovable goal as below:

H1:L=v ::L′

H :σ |= a 7→v ∗ a+4 7→Vptr(a′) ∗ lseg(a′, 0, L′)

σ |= emp

Then we would know that there should be a list segment lseg(a, 0, L)
in the post-condition, and we modify the post-condition as below:

` {list(x, L) ∗ y� }y=(∗x).next{list(x, L) ∗ y� }
Now hoare forward will successfully step forward the Hoare
judgement and prove the generated post-condition implies the one
that we give. However, when hoare unfold checks the resource
of (∗x).next, it generates a pure subgoal a 6= 0 which cannot be
proved under the current proof context. That is because the pre-
condition does not provide proper knowledge for a and L. To fix
this bug, we may simply add a pure assertion in the pre-condition
or modify the code. For example, we can change the pre-condition
into list(x, L) ∗ y � ∗ 〈L 6= nil〉, then we have an additional
condition H1, which makes the pure subgoal provable :

H1 : L 6= nil H : σ |= x�Vptr(a) ∗ lseg(a, 0, L) ∗ y�

a 6= 0

Also we could modify the code to satisfy the specification. Fig-
ure 14 presents the fixed code that satisfies the given specifica-
tions. We add a conditional statement for reading (∗x).next. Then
hoare forward solves the whole goal automatically since it is trivial
to prove the assertion at line 2 implies a 6= 0.

6. Implementation and Evaluation
Our tactics are implemented entirely in the Coq8.4 tactic language
Ltac. The tool suite consists of 18000 lines of definitions and lem-
mas, among which there are about 3000 lines for implementing the
tactics, while the others are for the definition of the subset of C,
the memory model, the separation logic assertions, the inference
rules of the program logic and associated lemmas. We have used
the tactics described in this paper to verify some simple program-
s, as shown in Table 1. Except for dlist traverse that traverses the
double-linked list, all the other programs can be proved with the
tactic “repeat hoare forward; sep pure”, and they only use one-
line proof and 4 words of proof scripts. We carry out our imple-
mentation using a machine with 8-core 2.5GHz cpu and 8G mem-

106

Programs Code Lines Proof Lines Proof Words
swap 3 1 4

swap struct 9 1 4
list reversal 8 1 4
list traverse 4 1 4
list enqueue 10 1 4
list append 10 1 4

list stack push 2 1 4
list stack pop 6 1 4
dlist traverse 4 70 162

Table 1. Some Examples Proved by Our Tactics

ory, and it takes less than 30 seconds to finish the proofs for these
examples.

Since our hoare unfold does not support automated unfolding
for double-linked lists, we cannot prove the dlist traverse exam-
ple with one-line proof script. We need to manually do unfolding
before running hoare forward, and to prove manually some gen-
erated side-conditions as well. Although it takes about 70 lines to
complete the proofs for the 4-line code, comparing to the naive Co-
q proofs (about 200 lines of proofs for each line of code) in our
previous work [10, 11], this is much better and we already bene-
fit a lot from our tactics. For the future work, we could extend our
hoare unfold tactic to unfold double-linked lists automatically for
better automation support.

Table 2 compares our tactics with some existing Coq tactics in
related work in proving the simple in-place list reversal function. It
gives the evidence to show that our tactics are “mostly-automated”
as Bedrock [8] for verifying programs manipulating singly-linked
lists, and outperform the other three. Detailed comparison with
these implementations is given in Sec. 7 below.

7. Related Work
Bedrock [8] is a framework which uses computational higher-order
separation logic and supports mostly-automated proofs about low-
level programs. Unlike our tactics, Bedrock requires the user to an-
notate the source code with hints for lemma applications (like list
rolling and unrolling), and a tactic named “vcgen” is developed
to generate verification conditions which can be solved by another
tactic like our sep auto. We try to use Bedrock to prove some ex-
amples, and our experience is that when the generated verification
conditions cannot be solved they are too complicated for users to
figure out what the problems are. It takes us lots of effort to ad-
just the specifications and code to achieve automated proofs. Our
hoare forward tactic supports step-by-step forward reasoning, and
users could get useful information for debugging the specifications
and the code from the unproven goals as we have explained before.
Our tactics are also “mostly-automated”, especially for programs
manipulating singly-linked lists. For example, as shown in Table 2,
a useful comparison comes from a simple in-place linked list re-
versal function implemented in both systems. None of our tactics
mentions variable or hypothesis names that are bound within the
proof as the Bedrock proof does. We do not consider higher-order
separation logic and our tactics only deal with the singly-linked
lists for now, also our tactics do not support data structures such as
double-linked lists and trees, which we leave as future work.

McCreight’s Coq tactics [16] for separation logic address simi-
lar concerns to the tactics presented in this paper. We borrow some
ideas from his work to implement sep lift and sep simpl, which are
called by sep auto and hoare forward. Proofs using McCreight-
s tactics still involve a significant number of manual proof steps,

Tool Suites Proof Lines Proof Words
VST [2] 200 795

SLTK [16] 68 400
Charge [6] 25 105

Bedrock [8] 1 3
Our Tactics 1 4

Table 2. Comparison of Proof Scripts for In-place List Reversal

applying operations such as explicit rearrangement of separating
conjunctions using associativity and commutativity. Since his im-
plementation also uses a vc-gen to verify programs it has the sim-
ilar weakness on debugging proofs as Bedrock. Our sep auto and
hoare forward hide these operations and have better support for de-
bugging proofs. The number of atomic tactic calls included in our
proofs for the simple in-place linked list reversal function are much
less than that in his proofs.

Appel’s unpublished note [2] and book [4] describe tactics im-
plemented in Coq for manual verification in a proof assistant us-
ing separation logic. It provides a similar tactic named Forward
to apply inference rules to move one step according to the syntax
of current statements. His Forward tactic simply applies inference
rules and generate some side conditions, which have to be proved
manually. It does not consider automatically unfold list segments
for automated symbolic execution of expressions, thus users have
to do lots of interactive proofs to prove programs manipulating
linked-lists. Our hoare forward tactic provides much better auto-
mated verification support.

Smallfoot [7] is an automated tool for verifying lightweight sep-
aration logic specifications of programs. It achieves fully automat-
ed reasoning using a limited separation logic assertions. This ap-
proach has been used as the basis for certified separation logic de-
cisions procedures in Coq [3] and HOL [18]. Our tactics do not
pursue fully automated verification, but try to provide as much au-
tomated verification support as possible for verifying C programs
using general and expressive separation logic specifications. Our
ultimate goal is to provide proof automation for large scale inter-
active proof development such as OS kernel verification, and the
expressiveness of the assertion language is crucial for this job. S-
mallfoot cannot be applied doing this since its lightweight separa-
tion logic specifications are not expressive enough.

Appel [3] develops a variation of smallfoot shape analyser in
Coq and verifies its correctness. Like smallfoot, it cannot be applied
for general purpose program verification either due to the limited
expressiveness of the assertions. On the other hand, our efforts to
support automated reasoning about programs manipulating singly-
linked lists are like developing proof-generating shape analysis al-
gorithms. The key difference is that we apply it with other tactics
together for general interactive verification with expressive asser-
tions.

Charge [6] provides a set of tactics for working with a higher-
order separation logic for a subset of Java in Coq. Their sl apply
tactics does the same thing as our cancel same tactic, which re-
moves the identical spatial assertions in the hypothesis and the goal.
We provide a more powerful tactic sep cancel, which is able to deal
with spatial assertions of list segments when the goal is provable
but there do not exist any identical components. Also, their tactic
forward-tactic for proving Hoare triples does not deal with singly-
linked lists as ours. As a result they need to use 25 lines and 105
words of proof scripts to prove the standard in-place list reversal
algorithm, while we only need one line and 4 words.

107

There is also other work on automated verification of system
software. Hawblitzel and collaborators have done automated veri-
fication of garbage collectors [12] and the core of an operating sys-
tem kernel [19] with Boogie [5]. There is no explicit proof terms
for their verification. Comparing to these work, our verification is
carried out in Coq, which provides proof terms for the verified pro-
grams.

8. Conclusion and Future Work
We have implemented a set of practical tactics for verifying C pro-
grams in Coq, including sep auto, sep normal, sep lift, sep split,
sep cancel and cancel same for automatically proving separa-
tion logic assertions and hoare forward for automatic verifica-
tion condition generation. In particular, we develop special tac-
tics hoare unfold for verifying programs manipulating linked lists.
Using our tactics we are able to verify several C programs with one-
line proof script. The key feature of our tactics is that, if the tactics
fail, they allow users to easily locate problems causing the failure
by looking into the remaining subgoals, which greatly improves
the usability when human interaction is necessary.

The purpose of our tactics is for verifying a variant of µC/OS-
II. For the future work, we will do the following things to apply
our tactics in OS kernel verification. We will extend our tactics
to support more data structures, such as double-linked lists and
trees. We will extend our sep pure to support automatically proving
the arithmetic properties of Int32. Also we will adapt our tactics
to support relational reasoning for proving linearizability of APIs
provided by µC/OS-II that has fine-grained concurrency in the
kernel.

Acknowledgments
We thank anonymous referees for their suggestions and comments.
This work is supported in part by National Natural Science Foun-
dation of China (NSFC) under Grant Nos. 61103023, 61229201,
61379039 and 91318301, the National Hi-Tech Research and De-
velopment Program of China (Grant No. 2012AA010901) and the
Fundamental Research Funds for the Central Universities (Grant
No. WK0110000031). Any opinions, findings, and conclusions
contained in this document are those of the authors and do not re-
flect the views of these agencies.

References
[1] The coq development team: The coq proof assistant. http://coq.inria.fr.
[2] A. W. Appel. Tactics for separation logic, 2006. http://www.cs.

princeton.edu/~appel/papers/septacs.pdf.
[3] A. W. Appel. Verismall: Verified smallfoot shape analysis. In Pro-

ceedings of Int’l Conf. on Certified Programs and Proofs (CPP’11),
pages 231–246, 2011.

[4] A. W. Appel. Program Logics for Certified Compilers. Cambridge
University Press, 2014.

[5] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In
Proceedings of the 4th International Conference on Formal Methods
for Components and Objects (FMCO’05), pages 364–387, 2006.

[6] J. Bengtson, J. B. Jensen, and L. Birkedal. Charge! - a framework
for higher-order separation logic in coq. In Proceedings of Interactive
Theorem Proving (ITP’12), pages 315–331, 2012.

[7] J. Berdine, C. Calcagno, and P. W.O’Hearn. Smallfoot: modular
automatic assertion checking with separation logic. In Proceedings of
the 4th international conference on Formal Methods for Components
and Objects (FMCO’05), pages 115–137, 2005.

[8] A. Chlipala. Mostly-automated verification of low-level programs in
computational separation logic. In Proceedings of the 32nd ACM SIG-
PLAN conference on Programming language design and implementa-
tion (PLDI’11), pages 234–245, 2011.

[9] D. Delahaye. A tactic language for the system coq. In Proceedings
of the 7th International Conference on Logic for Programming and
Automated Reasoning (LPAP’00), pages 85–95, 2000.

[10] X. Feng, Z. Shao, Y. Dong, and Y. Guo. Certifying low-level programs
with hardware interrupts and preemptive threads. In Proceedings
of the 2008 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’08), pages 170–182, 2008.

[11] X. Feng, Z. Shao, A. Vaynberg, S. Xiang, and Z. Ni. Modular ver-
ification of assembly code with stack-based control abstractions. In
Proceedings of the 2006 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’06), pages 401–414,
2006.

[12] C. Hawblitzel and E. Petrank. Automated verification of prac-
tical garbage collectors. In Proceedings of the 36th ACM
SIGPLAN-SIGACT symposium on Principles of programming lan-
guages (POPL’09), 2009.

[13] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood. seL4: Formal verification of an os kernel.
In Proceedings of the 22nd ACM Symposium on Operating Systems
Principles (SOSP’09), pages 207–220, 2009.

[14] J. J. Labrosse. Microc/OS-II. R & D Books, 2nd edition, 1998.
[15] X. Leroy. Formal certification of a compiler back-end, or: program-

ming a compiler with a proof assistant. In Proceedings of the 33th
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages (POPL’06), pages 42–54, 2006.

[16] A. McCreight. Practical tactics for separation logic. In Proceedings of
Theorem Proving in Higher Order Logics (TPHOLs’09), pages 343–
358, 2009.

[17] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Proceedings of the 17th Annual IEEE Symposium on
Logic in Computer Science (LICS’02), pages 55–74, 2002.

[18] T. Tuerk. A separation logic framework in HOL. In Proceedings of
Theorem Proving in Higher Order Logics: Emerging Trends, pages
116–122, 2008.

[19] J. Yang and C. Hawblitzel. Safe to the last instruction: Automated
verification of a type-safe operating system. In Proceedings of the
2010 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’10), pages 99–110, 2010.

108

