
Enabling Efficient Mobile Tracing with BTrace
Jiawei Wang

Huawei Dresden Research Center
Huawei Central Software Institute
Technische Universität Dresden
wangjiawei135@huawei.com

Nian Liu∗
Huawei Central Software Institute

nian.liu@huawei.com

Arnau Casadevall-Saiz
Huawei Dresden Research Center
Huawei Central Software Institute

Vrije Universiteit Brussel
arnau.casadevall.saiz@huawei.com

Yutao Liu
Huawei Dresden Research Center
Huawei Central Software Institute

liuyutao2@huawei.com

Diogo Behrens
Huawei Dresden Research Center
Huawei Central Software Institute

diogo.behrens@huawei.com

Ming Fu
Huawei Central Software Institute

ming.fu@huawei.com

Ning Jia
Huawei Central Software Institute

ning.jia@huawei.com

Hermann Härtig
Technische Universität Dresden
hermann.haertig@tu-dresden.de

Haibo Chen
Huawei Central Software Institute
Shanghai Jiao Tong University

haibochen@sjtu.edu.cn

Abstract
With the growing complexity of smartphone systems, effec-
tive tracing becomes vital for enhancing their stability and
optimizing the user experience. Unfortunately, existing trac-
ing tools are inefficient in smartphone scenarios. Their dis-
tributed designs (with either per-core or per-thread buffers)
prioritize performance but lead to missing crucial clues with
high probability. While these problems can be overlooked in
previous scenarios (e.g., servers), they drastically limit the
usefulness of tracing on smartphones.
To enable efficient tracing on smartphones, we propose

BTrace: a tracing tool that combines the performance bene-
fits of per-core buffers with the capability of retaining longer
continuous traces by partitioning a global buffer into mul-
tiple blocks, which are dynamically assigned to the most
demanding cores. BTrace further gracefully handles unique
requirements of modern smartphones, e.g., core oversub-
scription and resizing.
BTrace has been deployed in production, recording an

average of 2× continuous traces compared to the current best-
performing tracer (Linux ftrace) and improving performance
by 20%. Using BTrace, we successfully identified numerous

∗Nian Liu is the corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1079-7/25/03. . . $15.00
https://doi.org/10.1145/XXXXXX.XXXXXX

bugs that require traces of long duration and are challenging
to locate with existing tracers.

CCS Concepts: • Theory of computation→ Data struc-
tures design and analysis; Concurrent algorithms; •
Software and its engineering→ Software testing and
debugging.

Keywords: Tracing, Software Debugging, Mobile

ACM Reference Format:
Jiawei Wang, Nian Liu, Arnau Casadevall-Saiz, Yutao Liu, Diogo
Behrens, Ming Fu, Ning Jia, Hermann Härtig, and Haibo Chen. 2025.
Enabling Efficient Mobile Tracing with BTrace. In Proceedings of
the 30th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2 (ASPLOS
’25), March 30–April 3, 2025, Rotterdam, Netherlands. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/XXXXXX.XXXXXX

1 Introduction
Tracing is a vital technique in the development of operating
systems and applications. It allows developers to gain insight
into the system’s behavior, which in turn supports the analy-
sis of performance bottlenecks, the optimization of resource
utilization, and the improvement of overall stability.
In general, tracing tools (tracers) record events in ring

buffers. When such a buffer is full, event producers overwrite
the oldest entries. Upon request, the contents of the buffers
are dumped to the screen or other devices, so that the de-
velopers can inspect them [37, 39]. To avoid altering the
system’s behavior, tracing must incur little latency overhead
when recording events [1, 5, 11, 38]. Consequently, instead
of letting producers contend in a single global buffer, state-
of-the-art tracers such as Linux ftrace [25], LTTng [11–13],
VampirTrace [30], and others [5, 19, 36, 43, 47, 52] employ
distributed buffers (i.e., per-core or per-thread).

https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Wang et al.

Latest FragmentLarge FragmentsFragments with Numerous GapsGaps

ftrace

BTrace

LTTng

VTrace

BBQ

Noticeable Large Gaps

(a) Lock screen scenario. Big/Middle cores are idle.

ftrace

btrace

LTTng

VTrace

BBQ

Numerous Indistinguishable Small Gaps caused by Overwritten

Considerably More Gaps caused by Dropping Newest

(b) Running shopping app. Imbalanced trace-producing speed.

Figure 1.Comparison of the effectiveness of different tracers
by replaying real-world traces. BBQ [45] uses a global buffer.
Ftrace [25], LTTng(-UST) [12], V(ampir)Trace [30] are state-
of-the-art tracers using distributed buffers. Detailed setup
can be found in §5. All tracers are configured with the same
total buffer size (denoted as 𝑁). The X-axis shows whether
the last 𝑁 written events are retained in the buffer (newer to
the right). Ideally, all 𝑁 most recent events should be kept —
no events should be dropped, and no outdated events should
remain. However, existing tracers often drop events within
the last 𝑁 (see §2.2), leading to gaps and fragmented traces.
In contrast, BTrace (ours) records significantly longer latest
traces and eliminates gaps that exist in other tracers while
achieving the same performance.

Although smartphones represent a valuable scenario1 for
the software industry, existing tracers support software de-
velopers less effectively in the smartphone scenario than in
more traditional scenarios such as servers. In particular, to
capture smartphone-related issues, tracers have to store de-
tailed traces over a long time duration. One such example is
the analysis of energy consumption, which tends to be mea-
sured across different scenarios (e.g., lock screen or while
using apps) over extended periods. Storing the required de-
tailed scheduling and frequency adjustment decisions can
produce traces of an average of 100 MB per core per minute
(§2.2). Another example is the analysis of unexpected frame
drops and silent defects (§6), which can only be identified
by a series of sparsely spread events in the trace. Existing
tracers introduce gaps, i.e., drops of events, in the event se-
quences surprisingly often, causing such sparse events to be
missed.
To demonstrate this effect, we conduct an experiment

that replays real-world smartphone workloads using vari-
ous tracers (see Fig. 1). We employ a simple tracer based on
an efficient (in space) but slow global buffer (BBQ [45]) as

1The global smartphone market size reached at USD 527 Billion in 2023 [40].

the baseline. Although tracers with distributed buffers intro-
duce 10x shorter recording latency compared to BBQ (§5),
the resulting traces are often discontinuous, missing events
that were overwritten or dropped unexpectedly and unno-
ticed. While such issues were subtle and overlooked in server
and desktop scenarios, they become profound limitations in
smartphone scenarios due to their unique characteristics.

Highly skewed trace production speed among cores.
Smartphones often employ asymmetric multicore proces-
sors [3] to implement energy-aware strategies, such as sched-
ulers that frequently idle the big cores [16]. In per-core buffer
tracers, when big cores idle to save energy, little cores (power-
efficient cores) continuously fill their trace buffers, overwrit-
ing old entries; meanwhile idling big cores keep their older
traces intact, causing noticeable large gaps (see Fig. 1a) and
numerous indistinguishable small gaps (see Fig. 1b), which
ultimately fragment the traces. These fragmented traces de-
grade the effectiveness of the tracers, posing a major chal-
lenge in analyzing complex issues, such as those related to
scheduling strategies. The indistinguishable small gaps, in
particular, can be misleading for developers, making it un-
clear whether a gap results from non-executed code (e.g., a
non-taken branch) or trace drops.

Therefore, the effectiveness of a tracer in locating defects
is enhanced by maintaining a longer latest fragment — the
most recent sequence of events that contains no dropped
entries. Compared to the global-buffer tracer (based on BBQ),
the latest fragment of ftrace (with per-core buffers) is more
than 50% shorter. Although one might be tempted to simply
increase buffer sizes, that would be infeasible. Our empirical
studies show that buffers would require 2–3× more memory
(§5.2) — i.e., over 1 GB — to avoid losing events within 30
seconds; however, such memory usage is impractical given
the limited capacity of smartphones, which typically have
only 4 to 8 GB memory [44].

Core oversubscription is rather the rule, not the ex-
ception. Smartphones typically have a significant core over-
subscription: The system has many more threads running
than physical cores available. In our experiments, we ob-
serve more than 30 distinct trace-generating threads per
core across various scenarios (§2.2). Therefore, threads are
likely to be preempted while writing to the trace buffer at
arbitrary program locations.
In such situations, existing tracers either block other

threads (like BBQ), drop the newest entries (like LTTng [10]),
or disable preemption in the kernel (like ftrace). Due to that,
LTTng introduces considerably more trace gaps compared
to ftrace (see Fig. 1b). Unfortunately, disabling preemption is
not a viable option for tracing components in userspace, as it
incurs a prohibitive cost from kernel round-trip operations
— often exceeding the buffer tracing latency itself. With the
growing demand for debugging complex userspace frame-
works like AOSP [22] and OpenHarmony [20], alongside the

Enabling Efficient Mobile Tracing with BTrace ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

increased deployment of OS services in userspace — both in
Linux [31, 34] and in modern microkernel-based OSes [7] —
the effectiveness of existing tracers is drastically limited.

In-production tracing requires dynamic buffer resiz-
ing. The growing trend of enabling tracing in production to
detect hard-to-trigger defects [4, 29, 32, 46, 51] is also poorly
supported by current tracers. In addition to emphasizing
minimal recording latency to avoid influencing user experi-
ence, hard-to-detect defects typically occur during specific
periods of long executions in production, such as browsing
certain web pages or during application startup. However,
the limited smartphone memory cannot be wasted with trac-
ing buffers. Therefore, tracers must efficiently resize buffers
in runtime, allocating larger buffers only during critical exe-
cution phases, and thereby minimizing the impact on user
experience.
The main challenge of resizing is safely reclaiming the

unused memory when shrinking the buffer. Concurrent ac-
cess to per-core buffers can easily trigger use-after-free bugs,
and to avoid that, ftrace disables preemption while reclaim-
ing memory; that is unacceptable in userspace, as discussed
above. Userspace tracers lack this capability altogether; to
implement concurrent buffer shrinking, they would have to
employ safe memory reclamation (SMR) mechanisms in the
critical path of the producers, significantly impacting their
performance and the system’s behavior.

To enable efficient tracing on smartphones, we propose
BTrace, an efficient block-based tracer applicable in kernel
and userspace. Unlike existing tracers, which often produce
fragmented traces and might miss crucial events, BTrace
records continuous traces, fully utilizing the available buffer,
while maintaining equal or even lower recording latency.
Specifically, BTrace partitions a global buffer into multiple
equally sized blocks (§3). Each core retrieves a block to record
events; the block is exclusive to the core. Once the current
block is filled up, the core moves to the next available block.
This approach takes the best of both worlds. It preserves the
high memory efficiency of the global buffer while reducing
contention, thereby minimizing write latency (§3.1). BTrace
further enhances the effectivity ratio, i.e., the ratio of the lat-
est fragment to the overall buffer capacity, by closing blocks
that are likely to be overwritten soon, preventing newer en-
tries from being recorded in those blocks (§3.2). To provide
a non-blocking interface while not dropping events, BTrace
allows some operations to be performed out-of-order (e.g.,
trace writing inside blocks, advancing to the next block) and
skips blocks currently occupied by preempted threads (§3.4).
Finally, BTrace supports runtime resizing with an implicit
memory reclamation scheme (§3.3), neither introducing syn-
chronization overhead nor disabling preemption.
Our experiments (§5) over several popular smartphone

applications and typical usage scenarios demonstrate that

BTrace achieves 2× better effectivity ratio than the best-
performing tracer (Linux ftrace) while reducing recording
latency by 20%. By allocating a 450 MB tracing buffer, BTrace
successfully captures detailed and continuous 30-second
traces, whereas ftrace(the best of the existing tracers) records
intermittent data totaling 10 seconds. In production (§6),
BTrace has allowed our developer teams to efficiently diag-
nose over 200 bugs that require traces of long duration and
are challenging to locate with state-of-the-art tracers.

2 Background and Motivation
2.1 System Tracing
Logging vs. Tracing vs. Profiling. Logging, tracing, and
profiling are distinct yet complementary techniques for de-
bugging and analyzing complex systems, each with specific
data collection requirements. Logging primarily aids func-
tional testing by recording arbitrary strings from various
system components [18]. Tracing, on the other hand, focuses
on performance analysis by capturing detailed system states
to reconstruct event timelines. As a more specialized form of
logging, tracing generates significantly larger data volumes
and incurs certain runtime overhead. Profiling involves sam-
pling high-frequency events like CPU and memory usage or
call stacks at periodic intervals. The key distinction between
tracing and profiling is that tracing is designed to be non-
droppable (other than the oldest) for locating the root causes,
while profiling allows for data to be missed or dropped. Al-
though BTrace is primarily designed for tracing, it can also
be applied to logging and profiling to improve performance
and memory efficiency.
Persist vs. In-memory. To minimize recording latency,
most tracers store traces in an in-memory, non-persistent
ring buffer in overwrite mode. When suspicious symptoms
are detected, a daemon collector dumps the buffer [26, 32, 51].
Some userspace tracers persist all traces to flash storage.
They first store traces in an in-memory ring buffer and then
persist them either synchronously when the buffer fills [30]
or asynchronously via a reader [12]. However, persisting
all traces increases write frequency, which adds energy and
performance overhead [15], shortens flash storage lifespan,
and degrades write speed during concurrent reads. As a
result, smartphones typically rely on in-memory tracing for
issue diagnosis, both in development and in production.

2.2 Calls for An Efficient Mobile Tracer
Using a global buffer leads to unavoidable contention of the
tracing buffer [12]. Therefore, state-of-the-art tracers adopt
distributed buffers, either per core [5, 11, 12, 19, 25, 36, 43, 47]
or per thread [30, 32, 33, 50–52], to reduce the contention
and prioritize performance. Yet, all of them fail to efficiently
locate defects issues on smartphones due to the following
observations.

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Wang et al.

0 50 100 150 200
binder_lock
network
res
power
am
ss
wm

pagecache
hal
input
view
dalvik
freq

binder_driver
idle
gfx
sched
irq
energy/thermal/...

Figure 2. Trace producing speed of different atrace cate-
gories (MB per core per min). energy/thermal/... are custom
tracepoints that provide detailed reasons. Locating defects
in smartphones typically requires enabling multiple trace-
points to locate system-wise issues.

Observation 1: Smartphones require detailed trace
recording over a long duration within a limited buffer
capacity. We observe a substantial increase in trace size
when diagnosing defects and issues on smartphones. Fig. 2
shows the trace generation rates for various Android
atrace2 [17] categories. Identifying energy and performance
issues on smartphones requires tracking high-frequency
events, such as idle decisions (idle), frequency altering
(freq), scheduling actions (sched), and energy-aware
strategies (energy / thermal /...), where each core generates
approximately 100 MB of trace data per minute on average.
Beyond the sheer volume of data, some defects necessi-

tate recording traces over an extended period. Based on an
analysis of over 4,000 issues in the defect tracking system of
a beta release of the smartphone system (§6), the following
three primary defect types make up 5% of the total issues.
First, energy efficiency defects arise not from a single decision
but from the interplay of multiple strategies over time, such
as scheduling, frequency altering, and idle decisions. Second,
diagnosing performance issues, like frame drops, also requires
long-duration traces to identify causes such as priority inver-
sion or suboptimal scheduling decisions of a period. Finally,
daemon processes are deployed to detect silent defects, which
only report issues after long timeouts to avoid false positives.
Therefore, extended trace recording is crucial for diagnosing
the root causes of these problems. We present detailed case
studies of in-production defects associated with these three
types in §6.

However, smartphones have strict restrictions on tracing
buffer size due to constrained memory capacity, making
it challenging to store all the necessary information. For
instance, many recently released flagship devices are still
equipped with only 8 GB of memory [2, 23, 42], while lower-
end models may have as little as 4 GB [35, 48]. Moreover,
memory consumption by applications, including background
processes, continues to rise. As a result, tracing buffers are
typically restricted to under 500 MB to avoid negatively
impacting system-wise behavior and user experience.
2Atrace uses ftrace to trace system events.

 0

 150

 300

 450

 0 10 20 30

D
a

ta
 S

iz
e

 (
M

B
)

Record Time (Seconds)

Level-3 Level-2 Level-1

VTrace

LTTng

ftrace

BTrace

BBQ

Figure 3. Levels of traces can be recorded by different tracers.
Horizontal lines show the latest and continuous traces (the
latest fragment) that can be recorded by different tracers
with the same fixed 450 MB buffer. A higher level of traces
includes more details and is required to locate system-wise
performance issues. BTrace can store all level-3 traces in 30
seconds (without exceeding the horizontal line), while ftrace
can only store level-2.

Nevertheless, existing tracers with distributed buffers are
inefficient at recording all necessary traces due to poor mem-
ory efficiency. Fig. 3 illustrates the trace size over a 30-second
period on a 12-core smartphone, comparing various tracers
using the same 450 MB buffer. We categorize the enabled
tracepoints into different levels based on their frequency and
relevance for diagnosing various types of bugs. Level-1 traces
include minimal events like the binder (the binder_driver cat-
egory), which help establish thread dependencies and locate
issues like thread hangs. Level-2 traces capture additional
information, such as scheduling decisions or IRQs (sched
or irq category in atrace), necessary for diagnosing perfor-
mance issues like frame drops or audio stuttering (often
linked to IRQ handling). Level-3 traces add further custom
details, such as thread migration triggered by energy or ther-
mal considerations, which are difficult to explain without
deeper insights. As shown in the figure, with existing trac-
ers and a 450 MB buffer, only level-2 traces can be reliably
stored continuously. Recording all level-3 traces over the
past 30 seconds requires over 1GB of buffer space, which is
impractical for smartphone deployment.

Observation 2: Thousands of threads with highly
skewed trace-producing speeds lead to unexpected
trace overwrites or drops. Smartphones with asymmetric
processors [3, 27] often idle the big cores to save energy,
causing highly skewed speeds in producing traces. Fig. 4
demonstrates the varying trace-producing speeds in
smartphones across different scenarios over a 30-second
period. For example, workloads such as instant messaging
(IM) tend to generate similar trace speeds across cores, while
scenarios such as playing online video (Video-1) exhibit
significant differences, with the little cores producing
considerably more traces than the big cores.

Enabling Efficient Mobile Tracing with BTrace ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

 0

 3

 6

 9

 12

 15

 18

 0 1 2 3 4 5 6 7 8 9 10 11

S
p

e
e

d
 (

1
0

3
 e

n
tr

ie
s
/s

e
c
.)

Core ID

Desktop
Video-1
Video-2

eShop-1
LockScr.

IM

Figure 4. Average trace speed (in thousands of entries per
second) for each core in a 12-core smartphone [24] across
selected typical workloads from §5. Core 0-3 are little cores.
Core 4-9 are middle cores. Core 10-11 are big cores.

ts: 1

ts: 1

Collected Fragmented Trace

ts: 1
0

ts: 1
1

ts: 1
3

ts: 1
5

ts: 1
6

ts: 1
7

ts: 1
8

ts: 1
9

ts: 2
0

Gaps

Big Core

ts: 10

ts: 13

ts: 16

Mid. Core

ts: 11

ts: 17

Mid. Core

W
rap

 A
ro

u
n

dOverwritten

Traces

ts: 12

ts: 14

ts: 15

ts: 18

ts: 19

ts: 20

Little Core

Figure 5. An example of buffer under-utilization and data
continuity issues caused by skewed trace production speeds
across per-core buffers. Traces with timestamps (ts) 12 and
14 are overwritten due to buffer wraparound in the little core,
while nearby traces are retained in the middle and big cores,
resulting in indistinguishable gaps in the collected traces.

This skewed trace-producing speed leads to unexpected
overwrites, which degrades the effectivity ratio, indicating
the proportion of the latest fragment (in size) retained in the
buffer. Fig. 5 illustrates an example: while the buffer for a
slow-producing big core remains half-filled, the buffers for
the little core wrap around, dropping some entries, leading
to low buffer utilization. Furthermore, the skewed speed
also results in indistinguishable gaps in the collected traces.
For example, traces in the middle cores’ (slower producers’)
buffers, such as trace entries with timestamps (ts) 11 and 13,
are retained, while nearby traces in the little core’s (faster
producer) buffers, such as ts-12 and ts-14, are overwritten,
resulting in an effectivity ratio of 6

16 = 37.5%, where 6 is the
size of the latest fragment (from ts-15 to ts-20), and 16 is the
total capacity of the buffer. Moreover, these gaps are often
subtle and hard to detect, unlike the larger gaps (from ts-2
to ts-9, which are also overwritten by the little core).

Even more critically, smartphones experience significant
thread over-subscription, causing the most recent entries to
be dropped to avoid blocking the producer. Fig. 6 shows the

500

1000 Per Sec.
Total 30s

Ben
ch-

1

Brow
ser

Cam
era

Ben
ch-

2

Desk
top
Ins

tal
l

Vid
eo

-1

eS
ho

p-1

Ben
ch-

3

eS
ho

p-2

Loc
kS

cr.

Sta
rtA

pp
.

eS
ho

p-3

Vid
eo

-2
New

s

Vid
eo

-3
Gam

e IM
Blog

-1
Blog

-2
0

50

100

#T
hr

ea
ds

 p
er

 C
or

e

Figure 6. Box plot of the distinct thread count per core
producing traces simultaneously across different scenar-
ios. Smartphones experience significant over-subscription
in most scenarios. Total represents the thread count over 30
seconds, while Per Sec. indicates the count within a second.

number of threads per core recording to the trace buffer, both
on a per-second basis and over a 30-second period. Under
heavy load, for each core, an average of 400 threads write
to the same buffer over 30 seconds, and an average of 30
threads per second, significantly increasing the likelihood
of a thread being scheduled out during the recording of the
trace, which can block subsequent recording.

To avoid blocking, state-of-the-art tracers employ various
strategies. Per-thread tracers naturally avoid this issue by
allowing each thread to write independently. However, they
suffer from extremely low buffer utilization when handling
thousands of threads, making them suitable only for scenar-
ios with a limited number of threads (e.g., two threads in
Hubble [32]). The ftrace disables preemption in the kernel to
prevent threads from being preempted during trace writes,
but this approach is costly and, therefore, not feasible for
userspace tracing. Other tracers, such as LTTng, sacrifice
buffer availability by discarding the newest data, leading
to significant data loss, as shown in Fig. 1b.

Given the above issues, in real-world production environ-
ments, a state-of-the-art tracer typically needs to reserve
a buffer that is approximately 3× larger than the actual us-
age. However, this approach is often impractical due to the
limited memory capacity of smartphones.

Observation 3: Increasing demands of in-production
tracing and the temporal locality of defects require ef-
ficient runtime buffer resizing. Recently, there has been
a growing trend toward enabling tracing in production envi-
ronments to diagnose performance and functional issues that
are difficult to reproduce during development. For instance,
Google employs sampling-based feedback-directed optimiza-
tion [6, 33] in both data centers andmobile devices to analyze
performance issues based on traces collected in production.
Hubble enables in-production tracing in beta releases of
deployed smartphones [32], recording method entries and
exits to help locate bugs (reported anonymously with user

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Wang et al.

Table 1. Comparison of BTrace with state-of-the-art tracers. Here, 𝐶 and 𝑇 represent the number of cores and threads,
respectively. 𝑁 denotes the total number of data blocks, and 𝐴 represents the number of active blocks, which is equivalent to
the number of metadata blocks.

Contention Utilization Effectivity Ratio Resizing Availability

BBQ High (Global Buffer) 1 1 Not support Blocking
ftrace Low (Core Local) 1/C 1/C Disable Preemption Disable Preemption
LTTng Low (Core Local) 1/C 1/C Not support Dropping Newest
VTrace Low (Thread Local) 1/T 1/T Not support Separating to Threads
BTrace Low (Core Local) ∼1-(C-1)/N ∼1-A/N Implicit Reclaiming Skipping Blocked

consent). Hindsight [51] enables always-on tracing in dis-
tributed systems to detect rare edge-case requests, capturing
detailed traces that are collected after problematic symp-
toms emerge. Other debugging tools for desktops [9, 28, 46]
or servers [4, 29, 49] also enable in-production tracing to
address hard-to-reproduce bugs.
Since defects in smartphones typically occur during spe-

cific periods of prolonged execution, dynamic runtime buffer
resizing, where larger buffers are allocated only during criti-
cal execution phases, is crucial for minimizing the impact on
system-wide behavior and user experience. For example, an
application’s cold start time significantly affects user satis-
faction. When investigating unexpected delays in launching
certain apps in production (as detected by anomaly detectors
like Hubble [32]), a large trace buffer is allocated to store
detailed traces. Once the app’s main activity has finished
loading, the buffer can be dumped and reduced in size. Sim-
ilar requirements apply when analyzing issues related to
specific browsing actions or functional operations.

However, resizing the trace buffer, particularly when it is
shrinking, involves safe memory reclamation (SMR) mecha-
nisms, such as epoch-based reclamation (EBR) [21] and refer-
ence counting [8]. These mechanisms ensure that producers
and consumers do not access the portion of the buffer that has
been shrunk during or after the reclamation process, which
necessitates additional synchronization. Similar to locking,
SMR mechanisms mark the buffer as non-reclaimable before
accessing it, and update its status to reclaimable afterward,
which introduces significant overhead for each read or write
operation. Ftrace employs a mechanism similar to EBR by dis-
abling and enabling preemption before and after trace writ-
ing [41]. This approach ensures that if a core is preempted
by a resizing task (also non-preemptable), no producer on
that core is writing the buffer and will not access it during
the resizing, allowing the buffer to be safely reclaimed. How-
ever, disabling preemption introduces substantial overhead
in userspace. This limitation, alongwith similar drawbacks in
other SMR mechanisms, prevents existing userspace tracers
from supporting dynamic resizing, despite its importance for
debugging userspace frameworks [20, 22] and OS services
in multi-server microkernels [7].

3 Design of BTrace
BTrace enables efficient tracing through several key tech-
niques: block partitioning, block closing, implicit reclaiming,
and block skipping. These techniques will be introduced in
the following subsections. Table 1 compares BTrace with
existing tracers.

3.1 Improving Utilization via Block Partitioning
BTrace statically partitions the memory space into multiple
data blocks. During execution, each data block is assigned
to a particular core for a specific duration, allowing its pro-
ducers (i.e., the threads running on it) to generate traces
within that block, thereby reducing the contention. Once a
data block is filled, the producer will advance to the next
available block. For instance, as illustrated in Fig. 7, data
blocks D0, D1, D3, and D4 are assigned to Core 3, Core 1,
Core 0, and Core 2, respectively. Once D4 reaches capacity,
producers of Core 2 advance to D5 according to the posi-
tion indicator (the global metadata Pos) of the next block
(skipping to D6 to avoid blocking, further explained in §3.4).
Data blocks are used in a wrap-around manner. For example,
once D7 is filled, producers advance to D0, overwriting and
reusing it in the next round (a new round begins when the
buffer wraps around). Importantly, data blocks are assigned
to cores rather than threads, as smartphones often run thou-
sands of short-lived threads simultaneously. A per-thread
design would require reserving thousands of blocks, leading
to significant memory wastage since many would remain
only partially filled.

Through block partitioning, BTrace achieves high memory
utilization similar to global buffers, while maintaining low
recording latency similar to distributed buffers. In most cases,
producers write data within their assigned block (fast path),
which effectively eliminates contention between cores. In
contrast to distributed buffers, where memory utilization can
drop to as low as 1

𝐶
(for per-core tracers) or 1

𝑇
(for per-thread

tracers) as shown in Table 1, BTrace maintains a worst-case
memory utilization rate of 1 − 𝐶−1

𝑁
, where 𝑁 is the number

of data blocks,𝐶 is the number of cores, and𝑇 is the number
of threads. This worst case occurs when all other𝐶 − 1 cores
each occupy one block but generate no data, leaving only
one core to utilize the remaining available space. Given a

Enabling Efficient Mobile Tracing with BTrace ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

Data
Block

D0

Metadata
Block

M0 M1 M2 M3

Core 1 Core 0

Pos: D5

M1Rnd 1

Global Metadata

R
o

u
n

d
 0

Rnd Pos

0 2

0 1

Allocated

Confirmed

D1 D2 D3 D4 D5 D6 D7

Core 2

R
o

u
n

d
 1

Ratio: 2

SKP

Core 3

Figure 7. Overview of BTrace: Each core produces traces to its own exclusive data blocks; the metadata of these data blocks
is stored in corresponding metadata blocks according to a global ratio (2 in this example). When a data block is filled, the
producer advances to the next available metadata block and its associated data block.

setup with 𝐶=12 and 𝑇=500, where each data block is sized
as a 4 KB page, and the total buffer size is 12 MB, the memory
utilization rate increases dramatically from 8.3% for per-core
buffers (0.2% for per-thread buffers) to 99.6% with BTrace.
Comparedwith BBQ, although it can achieve 100% utilization,
it inherently causes high contention on the buffer, resulting
in increased recording latency (see §5), which is mitigated
through partitioning in BTrace.

3.2 Enhance Effectivity via Block Closing
Although partitioning improves buffer utilization, the tracer
may still exhibit a low effectivity ratio. For example, as shown
in Fig. 7, consider a case where Core 3 has just completed
writing data inD0 (the lagging block), and then Core 2wraps
around to that block after filling D6 and D7, causing the
newest data to be overwritten. To address this issue, we
limit the number of data blocks that all cores can operate
on simultaneously to 𝐴, defined as active blocks. 𝐴 should
be greater than or equal to the number of cores to ensure
sufficient concurrency. Whenever a producer advances to
the next block, it closes the lagging block that is 𝐴 blocks
behind it by filling the remaining space with dummy data,
preventing producers from producing new traces to that
block. In Fig. 7, with 𝐴=4, after Core 2 advances to D6, it
will close D1, and D3-D6 will become the active blocks. At
this point, Core 1 can no longer use D1 and must advance to
another data block.

As listed in Table 1, while per-core and per-thread tracers
guarantee the effectivity ratio of 1

𝐶
and 1

𝑇
, BTrace achieves

an effectivity ratio of 1 − 𝐴
𝑁
under an ideal scenario where

all closed blocks are fully utilized. For instance, with a setup
where 𝐴 is set to 8×𝐶 , the effectivity ratio can reach 96.88%.
However, in practice, there is a trade-off when selecting the
value of 𝐴. A smaller 𝐴 may achieve a higher theoretical
effectivity ratio but increases the likelihood that a data block
may not be fully utilized before being closed by another core,
resulting in reduced memory utilization and effectivity ratio.
We examine the suitable setting of 𝐴 in §5.1.

3.3 Enable Resizing via Implicit Reclaiming
BTrace adopts implicit reclaiming to achieve safe memory
reclamation in producers without introducing any additional
synchronization. Specifically, BTrace utilizes the semantic
that a producer has filled a data block as the indication of
ending an epoch3 of the EBR, since the data block will no
longer be accessed by that producer during this round. Con-
sumers, on the other hand, use a simple EBR directly since
it is off the critical path. This allows us to safely reclaim the
data block. However, due to the core-exclusive design (§3.1),
other producers on the same core may still access the block’s
metadata (not the data) even after the block is filled. There-
fore, BTrace only reclaims the data and leaves the metadata
unreclaimed.

To enable the reclamation of partially filled blocks, BTrace
further utilizes the semantic of producing traces within a
data block as implicit reference counting. Specifically, pro-
ducing traces involves first allocating the demand space, then
writing the event to that space, and finally confirming the
completion of the writing. The allocation and confirmation
can be treated as increasing and decreasing the reference
count, respectively. Once their corresponding values are
equal (Allocated.Pos equals to Confirmed.Pos), it indicates
that the data block is no longer referred to by any producer;
it can be closed as described in §3.2. Subsequently, BTrace
employs the same method mentioned above for reclaiming
these filled blocks.
Nevertheless, with only the above approach, metadata

must be reserved for all possible data blocks, leading to sig-
nificant memory overhead and is, therefore, considered unre-
alistic. Specifically, it must retain the metadata that supports
the maximum capacity, even when we shrink BTrace’s ca-
pacity to a very small size. For example, each metadata block
in BTrace is 128 bytes. Given a buffer capacity of 2 GB and a
data block size of 4 KB, the memory footprint of the metadata
would amount to 64 MB. This memory cannot be reclaimed,
even if the size of BTrace is reduced to as small as 4 KB.

3A time period during which someone may access the data.

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Wang et al.

X 4
X 1

T0.allocate(1) T1.allocate(2)

(a) In-order allocation.

Allocated

Confirmed

Rnd Pos

X 4
X 3

T0 T1.confirm()

(b) Out-of-order confirmation. (c) Filling dummy at tail.

X 5
X 4
T1.allocate(2)

Dum
my

Rnd Pos Rnd Pos

T0

Allocated

Confirmed

Allocated

Confirmed

Metadata
Block

Data
Block

0 5 0 5 0 5

Figure 8. Producing traces within a data block (fast path operation).

BTrace reduces the number of metadata through map-
ping. Specifically, since BTrace adopts the closing mechanism
(§3.2), the number of active blocks, including their metadata,
that producers can operate on simultaneously is fixed. There-
fore, instead of assigning each data block its own metadata,
BTrace restricts the metadata count to be equal to the number
of active blocks and maps each metadata block to multiple
data blocks. These metadata blocks are initialized at the start
and will not be reclaimed.
Specifically, the metadata of 𝑁 data blocks is mapped to

𝐴 metadata blocks, with the ratio (𝑁 :𝐴) stored in the global
metadata Ratio. For example, as illustrated in Fig. 7, eight
data blocks are managed by four metadata blocks, where
the ratio is set to two. Every four of the data blocks share
the same metadata block (e.g., D3 and D7 share M3). The
metadata block uses an indicator Rnd (the round of metadata)
to specify its current managed data block. For any other data
blocks it manages, BTrace considers them to be filled. For
example, the Rnd in the metadata blockM3 is 0, indicating
that it manages the data block D3 (round 0) rather than
managing D7 (round 1). With such, resizing BTrace can be
achieved by altering the Ratio.

3.4 Ensure Availability via Block Skipping
BTrace ensures availability both within the block and when
advancing across blocks.
Within the block. Within the block, we enable out-of-order
confirmation [45]. Specifically, after threads allocate space
within the block, they do not need to confirm their writes
sequentially according to the allocation order. Instead, each
thread confirms its writes independently by incrementing
the total confirmed entries. Once the total confirmed entries
match the total allocated entries, all allocated spaces are
considered finished.
Advancing the block. Producers can also encounter block-
ing during block advancement. For example, a producer may
be blocked when advancing to a data block that has been
assigned but not yet prepared (i.e., its metadata has not been
updated) by another preempted thread on the same core, or
when wrapping around to a data block that has unconfirmed
entries. However, such cases occur relatively infrequently.

Therefore, to address this, we adopt a skipping method that
trades some extra memory for increased availability.
Specifically, when a producer 𝑃 encounters the above

cases, BTrace forces the lagging producer to leave by clos-
ing the block. Subsequently, 𝑃 skips the block, sacrificing it
to maintain high availability. For example, in Fig. 7, Core 2
skips D5 and utilizes D6 instead, because the corresponding
metadata block (M1) for D5 is not yet complete. The skipped
data block can be reused in the subsequent rounds once all
its writes are finished. Experimental results demonstrate
that even under significant over-subscription, the sacrificed
memory is negligible (§5.1).

4 Implementation
4.1 Single Data Block Operations
Figure 8 illustrates the trace production procedure within
a block (the fast path). The metadata block contains two
variables: one for allocating entries (Allocated) and one for
confirming entries (Confirmed). Only the lower bits of these
variables (Pos) track the corresponding information, while
the higher bits of each (Rnd) indicate how many rounds this
metadata block has been used and also indicate its associated
data block (see Sec. 3.3). In this example, the data block has
a capacity of five, while the metadata block manages the
underlying data block. The value of Rnd is marked as X for
simplicity.
As shown in Fig. 8(a), threads T0 and T1 are from the

same core, and this data block is currently assigned to them.
When T0 produces traces, it allocates space by atomically
performing a fetch-and-add (FAA) operation on the Allo-
cated variable. However, before T0 executes the subsequent
confirming operation after finishing copying the data into
the allocated space, T1 may be scheduled to run and allo-
cate another space. To avoid blocking T1 from confirming
its traces, instead of letting Confirmed records the position
that points to the boundary of confirmed and unconfirmed
spaces, BTrace permits out-of-order confirmation by chang-
ing it to a counter that records how many spaces have been
confirmed. Therefore, T1 can directly update Confirmed.Pos
from 1 to 3 as depicted in Fig. 8(b). Consumers can only read
the data of this data block when all allocated spaces have

Enabling Efficient Mobile Tracing with BTrace ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

D4 D5 D2 D3

T2

Allocated

Confirmed M
0 2 4

2 3

Rnd Pos

M
1 2 5

2 5

Rnd Pos

Dum
my

(a) Before advancement.

Core 0 (T1) 2 5
Core 1 (T2) 2 4

Ratio Pos

T1
allocate(2)

3 5
2 4

2 5
3 0M

0

M
1

2

2

Closing

4 Lock
data
block

D4

T2

D5
SKP
(D6) D7

3
T1

(b) Skipping block D6.

Dum
my

Dum
my

Dum
my

Rnd PosRnd Pos

Global ratio_and_pos

5

1
2 6 2 7

3
2 8

Fetch-and-add to find a new block.

3 5
2 4

3 1
3 1M

0

M
1

6

Resetting

7
Unlock

data
block

8 Update Core 0
ratio_and_pos

D4 D5
SKP
(D6) D7

T1

Dum
my

Dum
my

Dum
my

Rnd Pos Rnd Pos

Core 0 (T1) 2 7
Core 1 (T2) 2 4

Ratio Pos

(c) Finding available block D7.

T2

Core local
ratio_and_pos

Figure 9. Data block advancement (slow path operation).

been confirmed, i.e., the Pos of Allocated is equal to that of
Confirmed.
BTrace supports non-fixed-size traces, so the remaining

space at the end of a data block might be insufficient to store
the incoming trace. As shown in Fig. 8(c), T1 attempts to
produce a trace with a size of 2, while the remaining space in
the current data block is only 1. In this case, BTrace requires
T1 to fill the rest of the block with a dummy node, updating
the corresponding Allocated and Confirmed variables, and
then advances to the next available block (by following the
procedure in §4.2). Notice that the block advancement can
also be out of order to avoid blocking producers. For example,
when T1 advances to the next data block, it is acceptable that
T0 has still not confirmed its entries on this data block.

4.2 Data Block Advancement
Figure 9 illustrates the block advancement procedure after
the depletion of the current data block (the slow path).
Structures. The example shows four data blocks, managed
by two metadata blocks (due to the metadata mapping in-
troduced in §3.3, the ratio here is 2). Fig. 9(a) represents the
initial state before the advancement. At this stage, Rnd in
both metadata blocks M0 and M1 is equal to 2, meaning
they are managing data blocks D4 and D5, respectively. Each
core has its own core-local variable ratio_and_pos, which
combines the Ratio in the higher bits with the Pos in the
lower bits to allow atomic updates, indicating the position
of their assigned metadata and data blocks.
Block advancement. In Fig. 9(a), T1 from Core 0 is produc-
ing traces to D5, while T2 from Core 1 is producing traces to
D4. When T1 attempts to allocate space of size 2, the remain-
ing space in D5 is insufficient. Thus, T1 fills its remaining
space with dummy data and advances to the next block. To
find a new data block, T1 first performs an FAA operation
on the global ratio_and_pos (❶), identifying D6 as the next

candidate block, which is managed by metadata blockM0.
However, Confirmed.Pos of M0 is 3 rather than the block
capacity of 5 (Fig. 9(a)), indicating that its previous producer
has not finished writing traces to D4. Therefore, D6 cannot
be used in this round. To improve the effectiveness, T1 then
closes D4 (see Block Closing in §3.2) by filling its remaining
space with dummy data and updating the Allocated.Pos and
Confirmed.Pos inM0 to values 5 and 4 (❷). To avoid blocking
T1, after double-checking that producer (T2) has not finished
confirming (Confirmed.Pos in M0 does not equal to 5), T1
skips D6 (see Block Skipping in §3.4) by marking its header
as SKP and advances to D7 (❸).

Once T1 confirms that the metadata block of D7 (M1) indi-
cates the previous data block has been filled (Confirmed.Pos
of M1 is 5 in Fig. 9(a)), it attempts to lock the data block
by performing a compare-and-swap operation (❹), setting
Confirmed.Rnd to 3 and Confirmed.Pos to 0 atomically. This
prevents the data block from being overwritten or being
reclaimed. If the compare-and-swap operation fails, it means
some wrap-around producer has already successfully locked
the metadata block. In that case, T1moves on to find the next
candidate block and repeats the same procedure. Otherwise,
upon success, T1 updates the header of D7 (❺).
Subsequently, T1 resets the metadata block to reuse

the data block in this round by updating Allocated using
compare-and-swap (❻, with Pos updated to 1, which cor-
responds to the header’s size). A failed compare-and-swap
means some wrap-around producer has already closed
this block, which requires T1 to try again. Otherwise,
upon success, T1 then confirms the writing of the header
(❼) to unlock the data block. Finally, T1 uses an atomic
compare-and-swap to update the core-local ratio_and_pos
(❽), allowing other threads of Core 0 to use D7. Afterward,
T1 can produce traces to D7 following the fast-path
procedure in §4.1. If the compare-and-swap fails, it means

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Wang et al.

that other threads on Core 0 have already allocated a new
data block. T1 will fill D7 with dummy data and use that
block (not shown in the Fig. 9).

4.3 Speculative Consumer
When reading traces, the consumer first catches up to the lat-
est un-overwritten block by referencing the ratio_and_pos
of the producer. Since the trace producer may wrap around
and try to overwrite the same data block that the consumer is
reading, BTrace adopts a speculative method to avoid block-
ing the producer. Specifically, when the consumer reads a
filled data block, the consumer speculatively reads the block
and then re-checks the corresponding metadata after finish-
ing the read. If the metadata indicates that the data block is
not overwritten and the block is not marked as SKP, the con-
sumer reads all the data in the block except for the dummy
entries. Otherwise, the consumer abandons the current block
and reads the next one.
For a non-filled data block, the consumer can only read

the data if Allocated and Confirmed are equal. After reading,
the consumer closes the block by filling the remaining space
with dummy data and proceeds to read the next.

4.4 Buffer Resizing
To support buffer resizing, all data blocks should reside in
contiguous memory addresses. We preserve the virtual mem-
ory address of the buffer equal to its maximum size, using
the mmap and munmap syscalls to allocate and free physi-
cal memory while maintaining the virtual memory address.
After that, BTrace can be easily resized by adjusting the ratio
(§3.3). To ensure that all producers correctly observe the
new ratio and that subsequent traces are properly placed
in data blocks in accordance with the updated ratio, the re-
size procedure closes all active data blocks by executing the
advancement procedure outlined in §4.2 after updating the
global ratio_and_pos.
When shrinking the buffer, it is essential to ensure that

all producers and consumers have exited the shrunk blocks
before they are unmapped and reclaimed. To guarantee that
all producers have left, the shrinker traverses all metadata
blocks and checks whether they have been updated to the
newer round. For consumers, BTrace employs an epoch-
based reclamation method. The shrinker traverses all con-
sumers to ensure they are not in the shrinking epoch and
have left. Once these conditions are met, the shrinker can
safely unmap and reclaim the memory.

5 Evaluation
We conducted a trace replay benchmark to evaluate BTrace
with existing tracers under real-world smartphone loads.
Workloads. We collected 20 traces from three kinds of typ-
ical scenarios, where traces are needed to analyze perfor-
mance and energy issues, including (1) the top 10 applications

1x
C

2x
C

4x
C

8x
C

16
xC

32
xC

64
xC

#Active Blocks

0
2
4
6
8

10
12

La
te

st
 (M

B)

core-level
thread-level

Figure 10. The size of the latest fragment of BTrace under
different numbers of active blocks and replay methods. Here,
𝐶 represents the number of cores.

and games by number of downloads in the app store, (2) com-
monly used memory, CPU, and system performance testing
software utilized by developers, and (3) several typical usage
scenarios, such as at lock screen and desktop. Traces are
collected at level 3 (see Fig. 3) over a duration of 30 seconds
on a 12-core production smartphone [24].
Replaying setup. During the replay, we pin specific threads
to each core, generating corresponding traces based on tim-
ing, core assignments, and the lengths of each entry. To
examine the impact of oversubscription, we conduct two re-
play methods, including core-level and thread-level replaying.
Thread-level replaying creates the same number of threads
per core as counted in the collected traces, while for core-
level replaying, each core runs only one thread responsi-
ble for producing all traces of that core. To further identify
dropped traces, during the writing phase, we assigned each
trace a unique, monotonically increasing logic stamp. Data
with logic stamps that do not appear in the readout are con-
sidered missing. We allocate a 12 MB buffer for each tracer.
For BTrace, we set the size of each data block to be one
memory page (4 KB).
Tracers. We compared BTrace with four state-of-the-art
tracers, including the Function Tracer framework from the
Linux kernel v5.15 (ftrace) [25], the Linux Trace Toolkit Next
Generation Userspace Tracer v2.13 (LTTng) [12], the Vam-
pirTrace framework v5.14.4 (VTrace) [30], and the recently
proposed block-based bounded queue (BBQ) [45], whose
overwrite mode can be considered a core buffering mecha-
nism for tracing frameworks.

5.1 Self Comparison
As explained in Sec. 3, both the closing and skipping mecha-
nisms can lead to a drop in memory utilization and effectivity
ratio, which in turn reduces the size of the latest fragment.
To quantitatively investigate this, we ran BTrace with a vary-
ing number of active blocks (𝐴), ranging from 1× (i.e., 𝐴=12)
to 64× (i.e., 𝐴=768) of the core number (i.e., 12), under both
core-level and thread-level replay. We measured the size of

Enabling Efficient Mobile Tracing with BTrace ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

Table 2. The size of the latest continuous entries (in MB), the loss rate, the number of fragments, and the geometric mean of
the recording latency for each tracer under different workloads are presented. G.M. refers to the geometric mean.

B
en
ch
-1

B
ro
w
se
r

C
am

er
a

B
en
ch
-2

D
es
kt
op

In
st
al
l

V
id
eo
-1

eS
ho

p-
1

B
en
ch
-3

eS
ho

p-
2

Lo
ck
Sc
r.

St
ar
tA
pp

.

eS
ho

p-
3

V
id
eo
-2

N
ew

s

V
id
eo
-3

G
am

e

IM B
lo
g-
1

B
lo
g-
2

G
.M

.

La
te
st

BTrace 10.8 10.6 10.6 11.2 11.0 10.7 11.0 10.8 10.6 10.6 10.8 10.9 10.8 10.6 10.4 11.0 11.1 10.6 10.2 10.9 10.8
BBQ 11.6 11.6 11.7 11.7 11.6 11.6 11.6 11.5 11.6 11.5 11.6 11.6 11.5 11.5 11.5 11.6 11.6 11.6 11.6 11.5 11.6
ftrace 3.4 7.1 5.2 5.6 3.3 4.3 3.3 6.8 4.1 5.8 3.8 3.2 7.6 7.2 6.5 4.9 7.5 7.5 7.6 8.0 5.4
LTTng 2.8 7.3 6.5 5.4 3.2 3.7 0.1 6.7 4.2 0.3 3.7 3.1 7.9 1.8 0.7 5.2 6.8 7.4 0.4 1.2 2.5
VTrace 0.1 0.8 0.3 0.3 0.5 0.1 0.2 0.8 0.3 0.2 0.7 0.0 0.4 0.2 0.2 0.2 0.6 0.4 0.1 0.4 0.3

Lo
ss

Ra
te

BTrace 0.00
BBQ 0.00
ftrace 0.81 0.41 0.83 0.92 0.76 0.84 0.84 0.58 0.90 0.51 0.78 0.83 0.43 0.38 0.56 0.91 0.15 0.57 0.49 0.49 0.60
LTTng 0.81 0.38 0.82 0.92 0.76 0.84 0.84 0.57 0.90 0.46 0.78 0.83 0.31 0.40 0.53 0.91 0.19 0.53 0.56 0.62 0.60
VTrace 0.89 0.85 0.95 0.93 0.79 0.85 0.91 0.90 0.93 0.92 0.80 0.86 0.95 0.96 0.96 0.95 0.75 0.95 0.93 0.94 0.90

#F
ra
gm

en
ts BTrace 47 86 87 53 34 49 60 101 49 73 35 83 69 111 87 68 73 70 86 54 65

BBQ 2 21 106 3 3 4 7 243 12 169 1 105 222 66 45 236 122 152 76 385 34
ftrace 2e4 1e4 2e4 1e4 1e4 1e4 3e4 1e4 2e4 1e4 2e3 3e4 8e3 1e4 1e4 2e4 6e3 1e4 9e3 1e4 1e4
LTTng 2e4 9e3 1e4 1e4 1e4 1e4 3e4 9e3 2e4 1e4 3e3 3e4 6e3 1e4 1e4 2e4 7e3 1e4 2e4 2e4 1e4
VTrace 7e4 8e4 7e4 7e4 4e4 4e4 7e4 8e4 7e4 9e4 1e4 8e4 8e4 9e4 7e4 8e4 6e4 9e4 8e4 9e4 6e4

G
.M

.L
at
.(
ns
) BTrace 54 52 52 53 55 56 56 51 52 52 56 53 52 52 53 54 53 52 51 52 53

BBQ 111 138 495 119 95 102 148 510 115 894 88 485 828 738 794 447 520 822 763 776 324
ftrace 62 63 64 62 62 62 63 63 61 64 61 63 64 64 65 64 66 65 63 64 63
LTTng 263 251 246 260 266 266 260 250 251 227 271 251 236 238 239 250 250 232 243 228 249
VTrace 278 296 283 264 238 229 235 360 264 359 207 290 355 308 332 321 300 341 297 359 292

the latest fragment across these 20 workloads, and the results
are presented as a box plot in Fig. 10.
As shown in the figure, both a small and a large number

of active blocks lead to a decrease in the size of the latest
fragment. When the number of active blocks is small, the
varying trace production speeds between cores result in fre-
quent closures of partially filled blocks, thereby lowering
buffer utilization. For thread-level replaying, the outcomes
are significantly worse compared to core-level replaying,
as it also experiences frequent skipping, further reducing
buffer utilization, resulting in more outliers in the figure.
Conversely, with a large number of active blocks, the pri-
mary issue is the reduction in effectivity ratio. For instance,
when the number of active blocks is set to 64×, the size of
the latest fragment drops to 8 MB, which is dominated by
the theoretical value of 9 MB (75%×12 MB) according to the
equation in Table 2. Therefore, we select a sweet spot (i.e.,
at 16×) that has the maximum effectivity ratio across all sce-
narios as our empirical parameter and apply it in subsequent
experiments, as well as in production.

5.2 State-of-the-art Comparison
We then compare BTrace with state-of-the-art tracers using
the thread-level replaying. Table 2 shows the results across
workloads. A darker color indicates a better result.
Latest fragment (the higher the better). The size of the
latest fragment highlights the effective and reliable traces
available for locating defects. BBQ shows the nearly ideal
cases where the geometric mean size of the latest fragment

for all workloads is 11.6 MB, close to the buffer size of 12 MB.
The difference is due to the memory overhead of the buffer’s
metadata. BTrace achieves the second-best size of the latest
fragment, with an average size of 10.8 MB, which is 6.90%
lower than BBQ (yet BTrace exhibits much lower latency, as
shown in the latency comparison below), mainly due to the
closing and skipping mechanism discussed in §3.
Per-core buffers, such as ftrace and LTTng, have aver-

age sizes of 5.4 MB and 2.5 MB, respectively, 55% and 78%
lower than BTrace. Moreover, although they yield similar
results for some workloads (e.g., Browser and eShop1), LT-
Tng has significantly lower results for others (e.g., Video-1)
due to oversubscription, which causes entries to drop un-
expectedly. In workloads characterized by a more skewed
trace-producing speed, as evidenced by Fig. 4, e.g., LockScr.,
the results for ftrace and LTTng drop significantly to 3.2 MB
and 3.1 MB, while BTrace has a size of 10.8 MB, which is
2.4× larger than both. VTrace performs the worst, with an
average size of only 0.3 MB.
Loss rate (the lower the better). We then measure the
loss rate, which indicates how much data is lost within the
collected range, i.e., from the oldest to the newest, as well as
the probability of losing crucial clues. The ideal case is 0%.
As shown in the table, BTrace and BBQ achieve results

close to the ideal case, with a loss rate of less than 1% (omitted
to 0% due to precision rounding). For ftrace and LTTng, the
loss rate is 60%, while for VTrace, the value reaches as high
as 90%. For some heavy workloads like Video-3, the loss
rates for ftrace, LTTng, and VTrace are 91%, 91%, and 95%,

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Wang et al.

0 200 400
Latency (ns)

0

20

40

60

80

100

CD
F

BTrace
BBQ
LTTng
VTrace
ftrace

(a) eShop-2 workload.

0 200 400
Latency (ns)

0

20

40

60

80

100

CD
F BTrace

BBQ
LTTng
VTrace
ftrace

(b) Overall latency.

Figure 11. Recording latency CDF (in nanoseconds).

respectively. The high loss rate significantly increases the
probability of losing crucial clues, making trace analysis and
issue localization more challenging.
Fragments number (the lower the better). The table
further illustrates the number of fragments for each tracer,
highlighting the potential for unnoticeably dropping crucial
clues. The results reveal that, on average, distributed buffers
contain over 104 fragments across all scenarios, whereas
BTrace averages only 65 fragments. Additionally, when con-
sidering the latest continuous results, it is notable that most
fragments in BTrace are concentrated towards the tail of the
traces, which reduces their impact on locating defects.
Recording latency (the lower the better). We evaluate
the recording latency for each tracer. Threads may be pre-
empted during trace writing, which can cause significantly
longer latency (e.g., 1000×). To mitigate the impact of these
outliers and make the results more reasonable, we calculate
the geometric mean of the latency for each recording.

As shown in the table, BTrace achieves the lowest latency
(53 ns per entry), which is 20% lower than that of the second-
best, ftrace (63 ns). The mean latency of LTTng and VTrace
is 249 ns and 292 ns, respectively, which are 4.7× and 5.5×
longer than that of BTrace. The global buffer tracer BBQ
exhibits the highest latency, with a mean latency of 324
ns. However, for workloads with high oversubscription, the
latency of BBQ increases significantly. For example, for the
e-shop2 workload, BBQ reaches a mean latency of 894 ns.
To better highlight the latency differences, we present

the latency Cumulative Distribution Function (CDF) for the
e-shop2 workload, along with the overall CDF results, in
Fig. 11. As shown in the figure, BTrace consistently exhibits
the lowest latency at the 50th and 99th percentiles, whereas
BBQ shows the highest latency.

6 Case Study from Production
BTrace has been successfully deployed in production smart-
phones and is activated anonymously during specific suspi-
cious scenarios reported by users, helping to identify hard-
to-trigger defects. Tracing is enabled only in beta releases

and requires user consent, similar to previous works [32]. It
involves over 100,000 users and can uncover extremely rare
bugs — such as those occurring once every million hours —
that were not detected during pre-deployment testing. How-
ever, it is strictly not enabled in the general availability re-
lease to protect users’ privacy. All traced data is anonymized,
securely stored, and managed by the operating system, with
its security ensured through isolation mechanisms.
By reserving a 450 MB buffer in BTrace, we could store

traces for over 30 seconds without noticeably influencing
user experiences. An analysis of over 4,000 issues from the de-
fect tracking system for beta releases confirms that BTrace ef-
fectively identifies over 200 long-duration cause-effect bugs,
which are challenging to locate using ftrace due to its imprac-
tical memory requirements for such long-duration traces.
We present three representative real-world issues that were
uncovered through BTrace.
Energy defects. Energy defects are located by measuring
energy consumption across various scenarios over extended
periods. Using BTrace, we successfully captured relevant
events (e.g., frequency adjustments, idle decisions, thermal
information) in suspicious scenarios during beta releases,
which enabled us to identify numerous corner cases that
contribute to energy defects. One notable case is that middle
cores frequently enter a deep idle state in certain scenarios,
and subsequently, user-experience-critical threads (e.g., ren-
der threads [14]) are scheduled to run on them, triggering
the cores to wake up. However, before the cores fully acti-
vate, these threads experience timeouts and are prematurely
migrated to the big cores due to an overly aggressive sched-
uling strategy. This frequent migration leads to substantially
higher energy consumption in such scenarios. BTrace helps
capture events over an extended period, enabling us to locate
such an issue through statistical analysis.
Frame drops. Frame drops are complex issues arising from
multiple factors. While some stem from single-point defects
(e.g., deadlocks), many originate from root causes that occur
long before the symptoms appear. For instance, BTrace iden-
tified a periodically misbehaving thread (e.g., busy looping)
in beta releases, which increased chip temperatures before
silently terminating. This temperature rise triggered the heat
management daemon to unexpectedly downscale the CPU
frequency, leading to frame drops. Since the thread has al-
ready terminated long before the frame drop occurs, the root
cause is likely to be overwritten with existing tracers.
Another case involves the intricate dependencies among

render threads, which can become blocked in rare scenarios.
Trace analysis revealed that render threads occasionally ac-
quire a lock held by a memory reclaim thread, which, in turn,
may be blocked by yet another thread. These dependencies
often span extended durations and can only be revealed by
recording all the necessary traces using BTrace.

Enabling Efficient Mobile Tracing with BTrace ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

Silent defects. We deploy several daemons to detect silent
defects, which do not exhibit observable behavior and can
only be identified through timeout strategies. Daemons re-
sponsible for drivers are configured with a timeout of ap-
proximately 10 seconds, while those monitoring freezing
and wake-up events have timeouts exceeding 20 seconds. By
utilizing BTrace, we can store traces throughout the time-
out processes, enabling the identification of several hard-to-
trigger silent defects in beta releases. One notable example
occurs when smartphones fail to freeze, prompting the dae-
mon to report the issue after 20 seconds. Investigation of
the traces revealed that specific bound CPU threads failed
to migrate in corner cases, resulting in starvation after the
userspace driver hot-unplugs the CPU.

7 Conclusion and Future Work
Amid the growing complexity of smartphone systems, de-
velopers face the severe limitations of existing tooling, in
particular tracers. Taking into account the unique character-
istics imposed by smartphone systems, BTrace revisits the
state-of-the-art tracers and finds a novel design between the
memory efficiency of global buffers and the performance of
per-core buffers.

Nevertheless, BTrace is not limited to smartphones. It can
also be applied to emerging servers with hundreds of cores,
where varying core utilization may lead to significant space
wastage in existing tracers with distributed buffers. Specifi-
cally, most tasks in servers are executed on only a few cores
but tend to migrate frequently across cores. As a result, trac-
ing these tasks requires allocating sufficient space across all
cores, which leads to considerable space wastage. BTrace can
efficiently trace these tasks in such scenarios.

Acknowledgments
We would like to express our gratitude to our shepherd, Alec
Wolman, and the anonymous reviewers for their thoughtful
and constructive comments.

References
[1] The LTTng Documentation. https://lttng.org/docs/v2.13/#doc-what-

is-tracing. Accessed 17 October 2024.
[2] Apple. iPhone 16. https://www.apple.com/my/iphone-16/.
[3] ARM. ARM DynamIQ Redefines Multi-Core Computing. https://ww

w.arm.com/technologies/dynamiq. Accessed 17 October 2024.
[4] Mona Attariyan, MIchael Chow, and Jason Flinn. X-ray: Automating

Root-Cause Diagnosis of Performance Anomalies in Production Soft-
ware. In 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 12), pages 307–320, Hollywood, CA, October
2012. USENIX Association.

[5] Bryan M. Cantrill, Michael W. Shapiro, and Adam H. Leventhal. Dy-
namic Instrumentation of Production Systems. In 2004 USENIX Annual
Technical Conference (USENIX ATC 04), Boston, MA, June 2004. USENIX
Association.

[6] Dehao Chen, David Xinliang Li, and Tipp Moseley. AutoFDO: auto-
matic feedback-directed optimization for warehouse-scale applications.
In Proceedings of the 2016 International Symposium on Code Generation

and Optimization, CGO ’16, page 12–23, New York, NY, USA, 2016.
Association for Computing Machinery.

[7] Haibo Chen, Xie Miao, Ning Jia, Nan Wang, Yu Li, Nian Liu, Yutao Liu,
Fei Wang, Qiang Huang, Kun Li, Hongyang Yang, Hui Wang, Jie Yin,
Yu Peng, and Fengwei Xu. Microkernel Goes General: Performance
and Compatibility in the HongMeng Production Microkernel. In 18th
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 24), pages 465–485, Santa Clara, CA, July 2024. USENIX
Association.

[8] George E Collins. A method for overlapping and erasure of lists.
Communications of the ACM, 3(12):655–657, 1960.

[9] Weidong Cui, Xinyang Ge, Baris Kasikci, Ben Niu, Upamanyu Sharma,
Ruoyu Wang, and Insu Yun. REPT: Reverse Debugging of Failures
in Deployed Software. In 13th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 18), pages 17–32, Carlsbad, CA,
October 2018. USENIX Association.

[10] Mathieu Desnoyers. Implementation of LTTng ringbuffer. https:
//github.com/lttng/lttng-ust/blob/a6a42d4fcf48abb9f6ea6331cb620
8e279366a28/src/common/ringbuffer/ring_buffer_frontend.c#L2260.
Accessed 17 October 2024.

[11] Mathieu Desnoyers. Low-impact operating system tracing. PhD thesis,
École Polytechnique de Montréal, 2009.

[12] Mathieu Desnoyers and Michel Dagenais. LTTng: Tracing across exe-
cution layers, from the hypervisor to user-space. In Linux symposium,
volume 101, 2008.

[13] Mathieu Desnoyers and Michel R Dagenais. Lockless multi-core high-
throughput buffering scheme for kernel tracing. ACM SIGOPS Operat-
ing Systems Review, 46(3):65–81, 2012.

[14] Android Developers. Rendering in Android. https://developer.androi
d.com/topic/performance/rendering. Accessed 17 October 2024.

[15] Olivier Dion. LTTng: The challenges of user-space tracing. In Tracing
Summit, 2023.

[16] Linux Kernel Docs. Energy Aware Scheduling. https://docs.kernel.or
g/scheduler/sched-energy.html. Accessed 17 October 2024.

[17] Perfetto DOCS. ATrace: Android system and app trace events. https:
//perfetto.dev/docs/data-sources/atrace. Accessed 17 October 2024.

[18] Perfetto DOCS. Tracing 101. https://perfetto.dev/docs/tracing-101.
Accessed 17 October 2024.

[19] Úlfar Erlingsson, Marcus Peinado, Simon Peter, and Mihai Budiu. Fay:
extensible distributed tracing from kernels to clusters. In Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles,
SOSP ’11, page 311–326, New York, NY, USA, 2011. Association for
Computing Machinery.

[20] OpenAtom Foundation. OpenHarmony Project. https://docs.openhar
mony.cn/pages/v4.1/en/OpenHarmony-Overview.md. Accessed 17
October 2024.

[21] Keir Fraser. Practical lock-freedom. Technical report, University of
Cambridge, Computer Laboratory, 2004.

[22] Google. AOSP overview. https://source.android.com/docs/setup/ab
out. Accessed 17 October 2024.

[23] Huawei. Huawei p60. https://consumer.huawei.com/cn/phones/p60/.
[24] HUAWEI. HUAWEI Mate 60 Pro Specs. https://consumer.huawei.co

m/cn/phones/mate60-pro/specs/, 2023.
[25] Red Hat Inc. ftrace - Function Tracer. https://www.kernel.org/doc/h

tml/v5.0/trace/ftrace.html.
[26] Red Hat Inc. Monitoring processes for performance bottlenecks using

perf circular buffers. https://access.redhat.com/documentation/en-
us/red_hat_enterprise_linux/8/html/monitoring_and_managing_s
ystem_status_and_performance/creating-custom-circular-buffers-
to-collect-specific-data-with-perf_monitoring-and-managing-
system-status-and-performance. Accessed 17 October 2024.

[27] Intel. Performance Hybrid Architecture. https://www.intel.com/cont
ent/www/us/en/developer/articles/technical/hybrid-architecture.h
tml. Accessed 17 October 2024.

https://lttng.org/docs/v2.13/#doc-what-is-tracing
https://lttng.org/docs/v2.13/#doc-what-is-tracing
https://www.apple.com/my/iphone-16/
https://www.arm.com/technologies/dynamiq
https://www.arm.com/technologies/dynamiq
https://github.com/lttng/lttng-ust/blob/a6a42d4fcf48abb9f6ea6331cb6208e279366a28/src/common/ringbuffer/ring_buffer_frontend.c#L2260
https://github.com/lttng/lttng-ust/blob/a6a42d4fcf48abb9f6ea6331cb6208e279366a28/src/common/ringbuffer/ring_buffer_frontend.c#L2260
https://github.com/lttng/lttng-ust/blob/a6a42d4fcf48abb9f6ea6331cb6208e279366a28/src/common/ringbuffer/ring_buffer_frontend.c#L2260
https://developer.android.com/topic/performance/rendering
https://developer.android.com/topic/performance/rendering
https://docs.kernel.org/scheduler/sched-energy.html
https://docs.kernel.org/scheduler/sched-energy.html
https://perfetto.dev/docs/data-sources/atrace
https://perfetto.dev/docs/data-sources/atrace
https://perfetto.dev/docs/tracing-101
https://docs.openharmony.cn/pages/v4.1/en/OpenHarmony-Overview.md
https://docs.openharmony.cn/pages/v4.1/en/OpenHarmony-Overview.md
https://source.android.com/docs/setup/about
https://source.android.com/docs/setup/about
https://consumer.huawei.com/cn/phones/p60/
https://consumer.huawei.com/cn/phones/mate60-pro/specs/
https://consumer.huawei.com/cn/phones/mate60-pro/specs/
https://www.kernel.org/doc/html/v5.0/trace/ftrace.html
https://www.kernel.org/doc/html/v5.0/trace/ftrace.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/creating-custom-circular-buffers-to-collect-specific-data-with-perf_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/creating-custom-circular-buffers-to-collect-specific-data-with-perf_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/creating-custom-circular-buffers-to-collect-specific-data-with-perf_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/creating-custom-circular-buffers-to-collect-specific-data-with-perf_monitoring-and-managing-system-status-and-performance
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/creating-custom-circular-buffers-to-collect-specific-data-with-perf_monitoring-and-managing-system-status-and-performance
https://www.intel.com/content/www/us/en/developer/articles/technical/hybrid-architecture.html
https://www.intel.com/content/www/us/en/developer/articles/technical/hybrid-architecture.html
https://www.intel.com/content/www/us/en/developer/articles/technical/hybrid-architecture.html

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Wang et al.

[28] Baris Kasikci, Weidong Cui, Xinyang Ge, and Ben Niu. Lazy Diagnosis
of In-Production Concurrency Bugs. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles, SOSP ’17, page 582–598, New
York, NY, USA, 2017. Association for Computing Machinery.

[29] Baris Kasikci, Benjamin Schubert, Cristiano Pereira, Gilles Pokam, and
George Candea. Failure sketching: a technique for automated root
cause diagnosis of in-production failures. In Proceedings of the 25th
Symposium on Operating Systems Principles, SOSP ’15, page 344–360,
New York, NY, USA, 2015. Association for Computing Machinery.

[30] Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz,
Matthias Lieber, Holger Mickler, Matthias S Müller, and Wolfgang E
Nagel. The vampir performance analysis tool-set. In Tools for High
Performance Computing: Proceedings of the 2nd International Workshop
on Parallel Tools for High Performance Computing, July 2008, HLRS,
Stuttgart, pages 139–155. Springer, 2008.

[31] Jing Liu, Anthony Rebello, Yifan Dai, Chenhao Ye, Sudarsun Kannan,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Scale and
Performance in a Filesystem Semi-Microkernel. In Proceedings of
the ACM SIGOPS 28th Symposium on Operating Systems Principles,
SOSP ’21, page 819–835, New York, NY, USA, 2021. Association for
Computing Machinery.

[32] Yu Luo, Kirk Rodrigues, Cuiqin Li, Feng Zhang, Lijin Jiang, Bing Xia,
David Lion, and Ding Yuan. Hubble: Performance Debugging with In-
Production, Just-In-Time Method Tracing on Android. In 16th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
22), pages 787–803, Carlsbad, CA, July 2022. USENIX Association.

[33] Gabriel Marin, Alexey Alexandrov, and Tipp Moseley. Break dancing:
low overhead, architecture neutral software branch tracing. In Pro-
ceedings of the 22nd ACM SIGPLAN/SIGBED International Conference
on Languages, Compilers, and Tools for Embedded Systems, LCTES 2021,
page 122–133, New York, NY, USA, 2021. Association for Computing
Machinery.

[34] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld,
Sean Bauer, Carlo Contavalli, Mike Dalton, Nandita Dukkipati,
William C. Evans, Steve Gribble, Nicholas Kidd, Roman Kononov,
Gautam Kumar, Carl Mauer, Emily Musick, Lena Olson, Mike Ryan,
Erik Rubow, Kevin Springborn, Paul Turner, Valas Valancius, Xi Wang,
and Amin Vahdat. Snap: a Microkernel Approach to Host Networking.
In In ACM SIGOPS 27th Symposium on Operating Systems Principles,
New York, NY, USA, 2019.

[35] OPPO. OPPO A18. https://www.oppo.com/en/smartphones/series-
a/a18/, 2023. Accessed 17 October 2024.

[36] Insung Park and Ricky Buch. Event tracing-improve debugging and
performance tuning with ETW. MSDN magazine, page 81, 2007.

[37] Perfetto. System profiling, app tracing and trace analysis. https:
//perfetto.dev/. Accessed 17 October 2024.

[38] Mateusz Piotrowski. Benchmarking performance overhead of dtrace
on freebsd and ebpf on linux.

[39] The Chromium Projects. The Trace Event Profiling Tool. https://ww
w.chromium.org/developers/how-tos/trace-event-profiling-tool/.

Accessed 17 October 2024.
[40] Precedence Research. SmartphonesMarket Size, Share and Trends 2024

to 2034. https://www.precedenceresearch.com/smartphones-market.
Accessed 17 October 2024.

[41] Steven Rostedt. Code of ftrace ring buffer. https://github.com/torvald
s/linux/blob/master/kernel/trace/ring_buffer.c. Accessed 17 October
2024.

[42] Sumsung. Galaxy S23. https://www.samsung.com/my/smartphones/g
alaxy-s23/.

[43] The Linux Kernel documentation. Perf ring buffer. https://docs.kerne
l.org/userspace-api/perf_ring_buffer.html. Accessed 17 October 2024.

[44] Anvinraj Valiyathara. Howmuch ram is ideal for optimal performance?
https://www.croma.com/unboxed/how-much-ram-is-good-for-a-
phone. Accessed 17 October 2024.

[45] Jiawei Wang, Diogo Behrens, Ming Fu, Lilith Oberhauser, Jonas Ober-
hauser, Jitang Lei, Geng Chen, Hermann Härtig, and Haibo Chen. BBQ:
A Block-based Bounded Queue for Exchanging Data and Profiling. In
2022 USENIX Annual Technical Conference (USENIX ATC 22), pages
249–262, Carlsbad, CA, July 2022. USENIX Association.

[46] Lingmei Weng, Peng Huang, Jason Nieh, and Junfeng Yang. Argus:
Debugging Performance Issues in Modern Desktop Applications with
Annotated Causal Tracing. In 2021 USENIX Annual Technical Con-
ference (USENIX ATC 21), pages 193–207. USENIX Association, July
2021.

[47] R.W. Wisniewski and B. Rosenburg. Efficient, Unified, and Scalable
Performance Monitoring for Multiprocessor Operating Systems. In SC
’03: Proceedings of the 2003 ACM/IEEE Conference on Supercomputing,
pages 3–3, 2003.

[48] Xiaomi. Redmi Note 12. https://www.mi.com/global/product/redmi-
note-12/specs/, 2023. Accessed 17 October 2024.

[49] Carter Yagemann, Simon P. Chung, Brendan Saltaformaggio, and
Wenke Lee. Automated Bug Hunting With Data-Driven Symbolic
Root Cause Analysis. In Proceedings of the 2021 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS ’21, page 320–336,
New York, NY, USA, 2021. Association for Computing Machinery.

[50] Stephen Yang, Seo Jin Park, and JohnOusterhout. NanoLog: ANanosec-
ond Scale Logging System. In 2018 USENIX Annual Technical Confer-
ence (USENIX ATC 18), pages 335–350, Boston, MA, July 2018. USENIX
Association.

[51] Lei Zhang, Zhiqiang Xie, Vaastav Anand, Ymir Vigfusson, and Jonathan
Mace. The Benefit of Hindsight: Tracing Edge-Cases in Distributed
Systems. In 20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23), pages 321–339, Boston, MA, April 2023.
USENIX Association.

[52] Xu Zhao, Kirk Rodrigues, Yu Luo, Michael Stumm, Ding Yuan, and
Yuanyuan Zhou. Log20: Fully Automated Optimal Placement of Log
Printing Statements under Specified Overhead Threshold. In Proceed-
ings of the 26th Symposium on Operating Systems Principles, SOSP ’17,
page 565–581, New York, NY, USA, 2017. Association for Computing
Machinery.

https://www.oppo.com/en/smartphones/series-a/a18/
https://www.oppo.com/en/smartphones/series-a/a18/
https://perfetto.dev/
https://perfetto.dev/
https://www.chromium.org/developers/how-tos/trace-event-profiling-tool/
https://www.chromium.org/developers/how-tos/trace-event-profiling-tool/
https://www.precedenceresearch.com/smartphones-market
https://github.com/torvalds/linux/blob/master/kernel/trace/ring_buffer.c
https://github.com/torvalds/linux/blob/master/kernel/trace/ring_buffer.c
https://www.samsung.com/my/smartphones/galaxy-s23/
https://www.samsung.com/my/smartphones/galaxy-s23/
https://docs.kernel.org/userspace-api/perf_ring_buffer.html
https://docs.kernel.org/userspace-api/perf_ring_buffer.html
https://www.croma.com/unboxed/how-much-ram-is-good-for-a-phone
https://www.croma.com/unboxed/how-much-ram-is-good-for-a-phone
https://www.mi.com/global/product/redmi-note-12/specs/
https://www.mi.com/global/product/redmi-note-12/specs/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 System Tracing
	2.2 Calls for An Efficient Mobile Tracer

	3 Design of BTrace
	3.1 Improving Utilization via Block Partitioning
	3.2 Enhance Effectivity via Block Closing
	3.3 Enable Resizing via Implicit Reclaiming
	3.4 Ensure Availability via Block Skipping

	4 Implementation
	4.1 Single Data Block Operations
	4.2 Data Block Advancement
	4.3 Speculative Consumer
	4.4 Buffer Resizing

	5 Evaluation
	5.1 Self Comparison
	5.2 State-of-the-art Comparison

	6 Case Study from Production
	7 Conclusion and Future Work
	Acknowledgments
	References

